A spatial-temporal graph neural network framework for automated software bug triaging

被引:13
|
作者
Wu, Hongrun [1 ]
Ma, Yutao [2 ]
Xiang, Zhenglong [1 ,3 ]
Yang, Chen [4 ]
He, Keqing [2 ]
机构
[1] Minnan Normal Univ, Sch Phys & Informat Engn, Key Lab Intelligent Optimizat & Informat Proc, Zhangzhou 363000, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[4] IBO Technol Shenzhen Co Ltd, Shenzhen 212000, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Representation learning; Bug triage; Random walk; Attention;
D O I
10.1016/j.knosys.2022.108308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The bug triaging process, an essential process of assigning bug reports to the most appropriate developers, is related closely to the quality and costs of software development. Since manual bug assignment is a labor-intensive task, especially for large-scale software projects, many machine learning-based approaches have been proposed to triage bug reports automatically. Although developer collaboration networks (DCNs) are dynamic and evolving in the real world, most automated bug triaging approaches focus on static tossing graphs at a single time slice. Also, none of the previous studies consider periodic interactions among developers. To address the problems mentioned above, in this article, we propose a novel spatial-temporal dynamic graph neural network (ST-DGNN) framework, including a joint random walk (JRWalk) mechanism and a graph recurrent convolutional neural network (GRCNN) model. In particular, JRWalk aims to sample topological structures in a developer collaboration network with two sampling strategies by considering both developer reputation and interaction preference. GRCNN has three components with the same structure, i.e., hourly-periodic, daily-periodic, and weekly-periodic components, to learn the spatial-temporal features of nodes on dynamic DCNs. We evaluated our approach's effectiveness by comparing it with several state-of-the-art graph representation learning methods in three domain-specific tasks (i.e., the bug fixer prediction task and two downstream tasks of graph representation learning: node classification and link prediction). In the three tasks, experiments on two real-world, large-scale developer collaboration networks collected from the Eclipse and Mozilla projects indicate that the proposed approach outperforms all the baseline methods on three different time scales (i.e., long-term, medium-term, and short-term predictions) in terms of F1-score. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Spatial-Temporal Graph Neural Network for Detecting and Localizing Anomalies in PMU Networks
    Behdadnia, Tohid
    Thoelen, Klaas
    Zobiri, Fairouz
    Deconinck, Geert
    DEPENDABLE COMPUTING-EDCC 2024 WORKSHOPS, SAFEAUTONOMY, TRUST IN BLOCKCHAIN, 2024, 2078 : 75 - 82
  • [32] Multi-View Spatial-Temporal Graph Neural Network for Traffic Prediction
    Li, He
    Jin, Duo
    Li, XueJiao
    Huang, HongJie
    Yun, JinPeng
    Huang, LongJi
    COMPUTER JOURNAL, 2023, 66 (10): : 2393 - 2408
  • [33] Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction
    Hou, Hongxin
    Ning, Nianwen
    Shi, Huaguang
    Zhou, Yi
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 272 - 277
  • [34] Traffic Speed Prediction Based on Spatial-Temporal Fusion Graph Neural Network
    Liu, Zhongbo
    Li, Mingkui
    Zhao, Jianli
    Sun, Qiuxia
    Zhuo, Futong
    2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC 2021, 2021, : 77 - 81
  • [35] STEGNN: Spatial-Temporal Embedding Graph Neural Networks for Road Network Forecasting
    Si, Jiaqi
    Gan, Xinbiao
    Xiao, Tiaojie
    Yang, Bo
    Dong, Dezun
    Pang, Zhengbin
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 826 - 834
  • [36] Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction
    Wang, Xing
    Yang, Kexin
    Wang, Zhendong
    Feng, Junlan
    Zhu, Lin
    Zhao, Juan
    Deng, Chao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4026 - 4032
  • [37] Spatial-Temporal Attention Network for Temporal Knowledge Graph Completion
    Zhang, Jiasheng
    Liang, Shuang
    Deng, Zhiyi
    Shao, Jie
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT I, 2021, 12681 : 207 - 223
  • [38] Spatial-temporal graph neural networks for groundwater data
    Taccari, Maria Luisa
    Wang, He
    Nuttall, Jonathan
    Chen, Xiaohui
    Jimack, Peter K.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [39] PCG: A joint framework of graph collaborative filtering for bug triaging
    Dai, Jie
    Li, Qingshan
    Xie, Shenglong
    Li, Daizhen
    Chu, Hua
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2024, 36 (09)
  • [40] Attentive graph structure learning embedded in deep spatial-temporal graph neural network for traffic forecasting
    Bikram, Pritam
    Das, Shubhajyoti
    Biswas, Arindam
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2716 - 2749