A spatial-temporal graph neural network framework for automated software bug triaging

被引:13
|
作者
Wu, Hongrun [1 ]
Ma, Yutao [2 ]
Xiang, Zhenglong [1 ,3 ]
Yang, Chen [4 ]
He, Keqing [2 ]
机构
[1] Minnan Normal Univ, Sch Phys & Informat Engn, Key Lab Intelligent Optimizat & Informat Proc, Zhangzhou 363000, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[4] IBO Technol Shenzhen Co Ltd, Shenzhen 212000, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Representation learning; Bug triage; Random walk; Attention;
D O I
10.1016/j.knosys.2022.108308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The bug triaging process, an essential process of assigning bug reports to the most appropriate developers, is related closely to the quality and costs of software development. Since manual bug assignment is a labor-intensive task, especially for large-scale software projects, many machine learning-based approaches have been proposed to triage bug reports automatically. Although developer collaboration networks (DCNs) are dynamic and evolving in the real world, most automated bug triaging approaches focus on static tossing graphs at a single time slice. Also, none of the previous studies consider periodic interactions among developers. To address the problems mentioned above, in this article, we propose a novel spatial-temporal dynamic graph neural network (ST-DGNN) framework, including a joint random walk (JRWalk) mechanism and a graph recurrent convolutional neural network (GRCNN) model. In particular, JRWalk aims to sample topological structures in a developer collaboration network with two sampling strategies by considering both developer reputation and interaction preference. GRCNN has three components with the same structure, i.e., hourly-periodic, daily-periodic, and weekly-periodic components, to learn the spatial-temporal features of nodes on dynamic DCNs. We evaluated our approach's effectiveness by comparing it with several state-of-the-art graph representation learning methods in three domain-specific tasks (i.e., the bug fixer prediction task and two downstream tasks of graph representation learning: node classification and link prediction). In the three tasks, experiments on two real-world, large-scale developer collaboration networks collected from the Eclipse and Mozilla projects indicate that the proposed approach outperforms all the baseline methods on three different time scales (i.e., long-term, medium-term, and short-term predictions) in terms of F1-score. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Gait Recognition Algorithm based on Spatial-temporal Graph Neural Network
    Shi, Huan
    Hui, Bo
    Hu, Biao
    Gu, RongJie
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 59 - 62
  • [22] A dynamical spatial-temporal graph neural network for traffic demand prediction
    Huang, Feihu
    Yi, Peiyu
    Wang, Jince
    Li, Mengshi
    Peng, Jian
    Xiong, Xi
    INFORMATION SCIENCES, 2022, 594 : 286 - 304
  • [23] Automated diagnosis of schizophrenia based on spatial-temporal residual graph convolutional network
    Xu, Xinyi
    Zhu, Geng
    Li, Bin
    Lin, Ping
    Li, Xiaoou
    Wang, Zhen
    BIOMEDICAL ENGINEERING ONLINE, 2024, 23 (01)
  • [24] Neighborhood contrastive learning-based graph neural network for bug triaging
    Dong, Haozhen
    Ren, Hongmin
    Shi, Jialiang
    Xie, Yichen
    Hu, Xudong
    SCIENCE OF COMPUTER PROGRAMMING, 2024, 235
  • [25] ADVERSPARSE: AN ADVERSARIAL ATTACK FRAMEWORK FOR DEEP SPATIAL-TEMPORAL GRAPH NEURAL NETWORKS
    Li, Jiayu
    Zhang, Tianyun
    Jin, Shengmin
    Fardad, Makan
    Zafarani, Reza
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5857 - 5861
  • [26] Spatial-Temporal Graph Boosting Networks: Enhancing Spatial-Temporal Graph Neural Networks via Gradient Boosting
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Chen, Huiyuan
    Zheng, Yan
    Wang, Liang
    Wang, Junpeng
    Dai, Xin
    Zhuang, Zhongfang
    Zhang, Wei
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 504 - 513
  • [27] Physics-informed graph neural network for spatial-temporal production forecasting
    Liu, Wendi
    Pyrcz, Michael J.
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 223
  • [28] Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction
    Hou, Hongxin
    Ning, Nianwen
    Shi, Huaguang
    Zhou, Yi
    2022 IEEE 7th International Conference on Intelligent Transportation Engineering, ICITE 2022, 2022, : 272 - 277
  • [29] Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network
    Jiang, Ming
    Liu, Zhiwei
    MATHEMATICS, 2023, 11 (11)
  • [30] Spatial-Temporal Dynamic Graph Convolution Neural Network for Air Quality Prediction
    Xiaocao, Ouyang
    Yang, Yan
    Zhang, Yiling
    Zhou, Wei
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,