Spatial-Temporal Attention Network for Temporal Knowledge Graph Completion

被引:10
|
作者
Zhang, Jiasheng [1 ,2 ]
Liang, Shuang [1 ]
Deng, Zhiyi [1 ]
Shao, Jie [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Sichuan Artificial Intelligence Res Inst, Yibin 644000, Peoples R China
关键词
Temporal knowledge graph completion; Temporal knowledge graph embedding learning; Spatial-temporal data mining;
D O I
10.1007/978-3-030-73194-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal knowledge graph completion, which aims to predict missing links in temporal knowledge graph (TKG), is an important research task due to the incompleteness of TKG. Recently, TKG embedding methods have proved to be effective for this task. However, most of existing methods regard TKG as a set of independent facts and consequently ignore the implicit relevance among facts. Actually, as a kind of dynamic heterogeneous graph, the evolving graph structure of TKG is able to reflect a wealth of information. To this end, in this paper we regard temporal knowledge graph as heterogeneous and discrete spatial-temporal resource, and propose a novel spatial-temporal attention network to learn TKG embeddings by modeling spatial-temporal property of TKG while considering its special characteristics. Specifically, our model employs a Multi-Faceted Graph Attention Network (MFGAT) to extract rich structural information from the egocentric network of each entity. Additionally, an Adaptive Temporal Attention Mechanism (ADTAT) is utilized to flexibly model the correlation of entity representations in the time dimension. Finally, by combing our obtained representations with existing static KG completion methods, they can be extended to spatial-temporal versions to predict missing links in TKG while considering its inherent graph structure and time-evolving property. Experimental results on three real-world datasets demonstrate the superiority of our model over the state-of-the-art methods.
引用
下载
收藏
页码:207 / 223
页数:17
相关论文
共 50 条
  • [1] Spatial-temporal Graph Transformer Network for Spatial-temporal Forecasting
    Dao, Minh-Son
    Zetsu, Koji
    Hoang, Duy-Tang
    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024, 2024, : 1276 - 1281
  • [2] Spatial-temporal knowledge graph network for event prediction
    Huai, Zepeng
    Zhang, Dawei
    Yang, Guohua
    Tao, Jianhua
    NEUROCOMPUTING, 2023, 553
  • [3] Spatial-temporal graph neural network based on node attention
    Li, Qiang
    Wan, Jun
    Zhang, Wucong
    Kweh, Qian Long
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 7 (02) : 703 - 712
  • [4] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [5] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176
  • [6] Spatial-temporal graph attention network for video anomaly detection
    Chen, Haoyang
    Mei, Xue
    Ma, Zhiyuan
    Wu, Xinhong
    Wei, Yachuan
    IMAGE AND VISION COMPUTING, 2023, 131
  • [7] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [8] Incorporating Relational Awareness and Temporal Attention for Temporal Knowledge Graph Completion
    Xu, Zhihong
    Mao, Chen
    Wang, Liqin
    Dong, Yongfeng
    Computer Engineering and Applications, 2023, 59 (17) : 266 - 274
  • [9] STAGNN: a spatial-temporal attention graph neural network for network traffic prediction
    Luo, Yonghua
    Ning, Qian
    Chen, Bingcai
    Zhou, Xinzhi
    Huang, Linyu
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (04) : 413 - 432
  • [10] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243