Spatial-Temporal Attention Network for Temporal Knowledge Graph Completion

被引:10
|
作者
Zhang, Jiasheng [1 ,2 ]
Liang, Shuang [1 ]
Deng, Zhiyi [1 ]
Shao, Jie [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Sichuan Artificial Intelligence Res Inst, Yibin 644000, Peoples R China
关键词
Temporal knowledge graph completion; Temporal knowledge graph embedding learning; Spatial-temporal data mining;
D O I
10.1007/978-3-030-73194-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal knowledge graph completion, which aims to predict missing links in temporal knowledge graph (TKG), is an important research task due to the incompleteness of TKG. Recently, TKG embedding methods have proved to be effective for this task. However, most of existing methods regard TKG as a set of independent facts and consequently ignore the implicit relevance among facts. Actually, as a kind of dynamic heterogeneous graph, the evolving graph structure of TKG is able to reflect a wealth of information. To this end, in this paper we regard temporal knowledge graph as heterogeneous and discrete spatial-temporal resource, and propose a novel spatial-temporal attention network to learn TKG embeddings by modeling spatial-temporal property of TKG while considering its special characteristics. Specifically, our model employs a Multi-Faceted Graph Attention Network (MFGAT) to extract rich structural information from the egocentric network of each entity. Additionally, an Adaptive Temporal Attention Mechanism (ADTAT) is utilized to flexibly model the correlation of entity representations in the time dimension. Finally, by combing our obtained representations with existing static KG completion methods, they can be extended to spatial-temporal versions to predict missing links in TKG while considering its inherent graph structure and time-evolving property. Experimental results on three real-world datasets demonstrate the superiority of our model over the state-of-the-art methods.
引用
下载
收藏
页码:207 / 223
页数:17
相关论文
共 50 条
  • [21] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [22] Spatial-Temporal Traffic Data Imputation via Graph Attention Convolutional Network
    Ye, Yongchao
    Zhang, Shiyao
    Yu, James J. Q.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 241 - 252
  • [23] Continuous Sign Language Recognition Based on Spatial-Temporal Graph Attention Network
    Guo, Qi
    Zhang, Shujun
    Li, Hui
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (03): : 1653 - 1670
  • [24] DynSTGAT: Dynamic Spatial-Temporal Graph Attention Network for Traffic Signal Control
    Wu, Libing
    Wang, Min
    Wu, Dan
    Wu, Jia
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2150 - 2159
  • [25] Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    Journal of Computers (Taiwan), 2024, 35 (04) : 93 - 108
  • [26] Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion
    Wang, Jingqi
    Zhu, Cui
    Zhu, Wenjun
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 722 - 734
  • [27] Temporal Pyramid Network With Spatial-Temporal Attention for Pedestrian Trajectory Prediction
    Li, Yuanman
    Liang, Rongqin
    Wei, Wei
    Wang, Wei
    Zhou, Jiantao
    Li, Xia
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (03): : 1006 - 1019
  • [28] Video Scene Graph Generation with Spatial-Temporal Knowledge
    Pu, Tao
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9340 - 9344
  • [29] Capturing spatial-temporal correlations with Attention based Graph Convolutional Network for network traffic prediction
    Guo, Yingya
    Peng, Yufei
    Hao, Run
    Tang, Xiang
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 220
  • [30] Enhance Temporal Knowledge Graph Completion via Time-Aware Attention Graph Convolutional Network
    Wei, Haohui
    Huang, Hong
    Zhang, Teng
    Shi, Xuanhua
    Jin, Hai
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 122 - 137