Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals

被引:264
|
作者
Li, Zhijun [1 ]
Huang, Zhicong [1 ]
He, Wei [2 ]
Su, Chun-Yi [1 ,3 ]
机构
[1] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[3] Concordia Univ, Dept Mech & Ind Engn, Montreal, PQ H4B 1R6, Canada
基金
中国国家自然科学基金;
关键词
Adaptive impedance control; high-gain observer; neural networks; robotic exoskeleton; TRACKING CONTROL; MUSCLE; ARM; MANIPULATOR; STIFFNESS; MODEL;
D O I
10.1109/TIE.2016.2538741
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents adaptive impedance control of an upper limb robotic exoskeleton using biological signals. First, we develop a reference musculoskeletal model of the human upper limb and experimentally calibrate the model to match the operator's motion behavior. Then, the proposed novel impedance algorithm transfers stiffness from human operator through the surface electromyography (sEMG) signals, being utilized to design the optimal reference impedance model. Considering the unknown deadzone effects in the robot joints and the absence of the precise knowledge of the robot's dynamics, an adaptive neural network control incorporating with a high-gain observer is developed to approximate the deadzone effect and robot's dynamics and drive the robot tracking desired trajectories without velocity measurements. In order to verify the robustness of the proposed approach, the actual implementation has been performed using a real robotic exoskeleton and a human operator.
引用
收藏
页码:1664 / 1674
页数:11
相关论文
共 50 条
  • [21] α-Variable adaptive model free control of iReHave upper-limb exoskeleton
    Wang, Haoping
    Xu, Hui
    Tian, Yang
    Tang, Hao
    Advances in Engineering Software, 2020, 148
  • [22] α-Variable adaptive model free control of iReHave upper-limb exoskeleton
    Wang, Haoping
    Xu, Hui
    Tian, Yang
    Tang, Hao
    ADVANCES IN ENGINEERING SOFTWARE, 2020, 148
  • [23] Saturated Adaptive Control of Antagonistic Muscles on an Upper-Limb Hybrid Exoskeleton
    Aldrich, Jace B.
    Cousin, Christian A.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 4397 - 4402
  • [24] Adaptive robust control of 5 DOF Upper-limb exoskeleton robot
    Hao-Bo Kang
    Jian-Hui Wang
    International Journal of Control, Automation and Systems, 2015, 13 : 733 - 741
  • [25] PI2-Based Adaptive Impedance Control for GaitAdaption of Lower Limb Exoskeleton
    Wang, Xingjian
    Zhang, Runzhi
    Miao, Yinan
    An, Mailing
    Wang, Shaoping
    Zhang, Yuwei
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (06) : 1 - 11
  • [26] Interaction dynamics modeling and adaptive impedance control of robotic exoskeleton for adolescent idiopathic scoliosis
    Farhadiyadkuri, Farhad
    Popal, Ahmad Masih
    Paiwand, Shaabanullah Sharif
    Zhang, Xuping
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [27] Design Specifications for an Upper Limb Robotic Exoskeleton to be used in Neurorehabilitation
    Ruiz O, A. F.
    Lopez D, A.
    Delisle R, D.
    Jutinico A, A. L.
    Diaz, G. M.
    2013 PAN AMERICAN HEALTH CARE EXCHANGES (PAHCE), 2013,
  • [28] AAN Controller With Adaptive Gain for Upper Limb Exoskeleton
    Dong, Jixin
    Jia, Zhiwei
    Li, Erwei
    Lv, Qipeng
    IEEE ACCESS, 2024, 12 : 112767 - 112775
  • [29] Control of An Exoskeleton Robot for Upper Limb Rehabilitation
    Liu, Lin
    Shi, Yunyong
    Xie, Le
    2016 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE RCAR), 2016, : 528 - 532
  • [30] PID Admittance Control for an Upper Limb Exoskeleton
    Yu, Wen
    Rosen, Jacob
    Li, Xiaoou
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 1124 - 1129