Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals

被引:264
|
作者
Li, Zhijun [1 ]
Huang, Zhicong [1 ]
He, Wei [2 ]
Su, Chun-Yi [1 ,3 ]
机构
[1] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[3] Concordia Univ, Dept Mech & Ind Engn, Montreal, PQ H4B 1R6, Canada
基金
中国国家自然科学基金;
关键词
Adaptive impedance control; high-gain observer; neural networks; robotic exoskeleton; TRACKING CONTROL; MUSCLE; ARM; MANIPULATOR; STIFFNESS; MODEL;
D O I
10.1109/TIE.2016.2538741
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents adaptive impedance control of an upper limb robotic exoskeleton using biological signals. First, we develop a reference musculoskeletal model of the human upper limb and experimentally calibrate the model to match the operator's motion behavior. Then, the proposed novel impedance algorithm transfers stiffness from human operator through the surface electromyography (sEMG) signals, being utilized to design the optimal reference impedance model. Considering the unknown deadzone effects in the robot joints and the absence of the precise knowledge of the robot's dynamics, an adaptive neural network control incorporating with a high-gain observer is developed to approximate the deadzone effect and robot's dynamics and drive the robot tracking desired trajectories without velocity measurements. In order to verify the robustness of the proposed approach, the actual implementation has been performed using a real robotic exoskeleton and a human operator.
引用
收藏
页码:1664 / 1674
页数:11
相关论文
共 50 条
  • [31] Modular design and control of an upper limb exoskeleton
    Garrido, Javier
    Yu, Wen
    Li, Xiaoou
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2016, 30 (05) : 2265 - 2271
  • [32] Modular design and control of an upper limb exoskeleton
    Javier Garrido
    Wen Yu
    Xiaoou Li
    Journal of Mechanical Science and Technology, 2016, 30 : 2265 - 2271
  • [33] Control Methodologies for Upper Limb Exoskeleton Robots
    Gunasekara, J. M. P.
    Gopura, R. A. R. C.
    Jayawardane, T. S. S.
    Lalitharathne, S. W. H. M. T. D.
    2012 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2012, : 19 - 24
  • [34] Instrumented upper limb functional assessment using a robotic exoskeleton: normative references intervals
    Longatelli, Valeria
    Luciani, Beatrice
    Pedrocchi, Alessandra
    Gandolla, Marta
    2023 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, ICORR, 2023,
  • [35] Upper Limb Exoskeleton Robot Control Using Input Output Switching
    Fellag, Ratiba
    Yacef, Fouad
    Guiatni, Mohamed
    Hamerlain, Mustapha
    Degaa, Laid
    Rizoug, Nassim
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1658 - 1663
  • [36] A novel backstepping adaptive impedance control for an upper limb rehabilitation robot
    Bai, Jing
    Song, Aiguo
    Wang, Ting
    Li, Huijun
    COMPUTERS & ELECTRICAL ENGINEERING, 2019, 80
  • [37] Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety
    Kang, Hao-Bo
    Wang, Jian-Hui
    ISA TRANSACTIONS, 2013, 52 (06) : 844 - 852
  • [38] Adaptive Neural Network Control with Fuzzy Compensation for Upper Limb Exoskeleton in Active Spacesuit
    Li, Zhaoyang
    Dai, Yuehong
    Tang, Peng
    ELECTRONICS, 2021, 10 (06) : 1 - 15
  • [39] Novel Adaptive Reaching Law for Sliding Mode Control of an Upper Limb Exoskeleton Robot
    Brahmi, Brahim
    El-monajjed, Khaled
    Rahman, Mohammad Habibur
    Ahmed, Tanvir
    El-Bayeh, Claude
    Khan, Mahfuzur Rahman
    Saad, Maarouf
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1432 - 1437
  • [40] Direct force control of upper-limb exoskeleton based on fuzzy adaptive algorithm
    Tang, Jing
    Zheng, Jianbin
    Wang, Yang
    JOURNAL OF VIBROENGINEERING, 2018, 20 (01) : 636 - 650