Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of Liouville-Caputo type

被引:14
|
作者
Escalante-Martinez, J. E. [1 ]
Gomez-Aguilar, J. F. [2 ]
Calderon-Ramon, C. [1 ]
Aguilar-Melendez, A. [3 ]
Padilla-Longoria, P. [4 ]
机构
[1] Univ Veracruzana, Fac Ingn Mecan & Elect, Av Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[2] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Univ Veracruzana, Fac Ingn Civil, Av Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[4] Univ Nacl Autonoma Mexico, IIMAS, Circuito Escolar, Cd Univ, Mexico City 04510, DF, Mexico
关键词
Fractional calculus; Liouville-Caputo fractional derivative; synchronicity; fireflies; bioluminescence; Adams-Bashforth-Moulton method; CALCULUS;
D O I
10.1142/S1793524518500419
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a system of fractional differential equations that model the synchronized bioluminescence behavior of a set of fireflies put on two spatial arrangements is presented; the alternative representation of these equations contains fractional operators of Liouville-Caputo type. The objective of the model is to qualitatively recover synchronization and show that it is persistent. It is shown that the effort made by each firefly glow changes with respect to the number of male competitors and the distance between them. The conditions on biological parameters are interpreted.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Coupled reaction-diffusion waves in a chemical system via fractional derivatives in Liouville-Caputo sense
    Saad, Khaled M.
    Gomez-Aguilar, J. F.
    REVISTA MEXICANA DE FISICA, 2018, 64 (05) : 539 - 547
  • [42] Analytical Solutions of the Electrical RLC Circuit via Liouville-Caputo Operators with Local and Non-Local Kernels
    Francisco Gomez-Aguilar, Jose
    Fabian Morales-Delgado, Victor
    Antonio Taneco-Hernandez, Marco
    Baleanu, Dumitru
    Fabricio Escobar-Jimenez, Ricardo
    Mohamed Al Qurashi, Maysaa
    ENTROPY, 2016, 18 (08):
  • [43] On Solutions of Fractional Integrodifferential Systems Involving ψ-Caputo Derivative and ψ-Riemann-Liouville Fractional Integral
    Boulares, Hamid
    Moumen, Abdelkader
    Fernane, Khaireddine
    Alzabut, Jehad
    Saber, Hicham
    Alraqad, Tariq
    Benaissa, Mhamed
    MATHEMATICS, 2023, 11 (06)
  • [44] A New Combination Method for Solving Nonlinear Liouville-Caputo and Caputo-Fabrizio Time-Fractional Reaction-Diffusion-Convection Equations
    Khalouta, A.
    Kadem, A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (02): : 199 - 215
  • [45] Higher order class of finite difference method for time-fractional Liouville-Caputo and space-Riesz fractional diffusion equation
    Irandoust-Pakchin, Safar
    Abdi-Mazraeh, Somaiyeh
    Fahimi-Khalilabad, Iraj
    FILOMAT, 2024, 38 (02) : 505 - 521
  • [46] Post-Pandemic Sector-Based Investment Model Using Generalized Liouville-Caputo Type
    Awadalla, Muath
    Subramanian, Muthaiah
    Madheshwaran, Prakash
    Abuasbeh, Kinda
    SYMMETRY-BASEL, 2023, 15 (04):
  • [47] LIOUVILLE-TYPE THEOREMS FOR AN ELLIPTIC SYSTEM INVOLVING FRACTIONAL LAPLACIAN OPERATORS WITH MIXED ORDER
    Jleli, Mohamed
    Samet, Bessem
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [48] Liouville type theorems involving fractional order systems
    Liao, Qiuping
    Liu, Zhao
    Wang, Xinyue
    ADVANCED NONLINEAR STUDIES, 2024, 24 (02) : 399 - 414
  • [49] An accurate numerical algorithm based on the generalized Narayana polynomials to solve a class of Caputo-Fabrizio and Liouville-Caputo fractional-order delay differential equations
    Izadi, Mohammad
    Srivastava, Hari Mohan
    MATHEMATICAL COMMUNICATIONS, 2024, 29 (01) : 61 - 81
  • [50] Variational Problems Involving a Caputo-Type Fractional Derivative
    Ricardo Almeida
    Journal of Optimization Theory and Applications, 2017, 174 : 276 - 294