Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of Liouville-Caputo type

被引:14
|
作者
Escalante-Martinez, J. E. [1 ]
Gomez-Aguilar, J. F. [2 ]
Calderon-Ramon, C. [1 ]
Aguilar-Melendez, A. [3 ]
Padilla-Longoria, P. [4 ]
机构
[1] Univ Veracruzana, Fac Ingn Mecan & Elect, Av Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[2] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Univ Veracruzana, Fac Ingn Civil, Av Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[4] Univ Nacl Autonoma Mexico, IIMAS, Circuito Escolar, Cd Univ, Mexico City 04510, DF, Mexico
关键词
Fractional calculus; Liouville-Caputo fractional derivative; synchronicity; fireflies; bioluminescence; Adams-Bashforth-Moulton method; CALCULUS;
D O I
10.1142/S1793524518500419
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a system of fractional differential equations that model the synchronized bioluminescence behavior of a set of fireflies put on two spatial arrangements is presented; the alternative representation of these equations contains fractional operators of Liouville-Caputo type. The objective of the model is to qualitatively recover synchronization and show that it is persistent. It is shown that the effort made by each firefly glow changes with respect to the number of male competitors and the distance between them. The conditions on biological parameters are interpreted.
引用
下载
收藏
页数:25
相关论文
共 50 条
  • [21] On a System of Coupled Langevin Equations in the Frame of Generalized Liouville-Caputo Fractional Derivatives
    Salman, Hassan J. Al
    Awadalla, Muath
    Subramanian, Muthaiah
    Abuasbeh, Kinda
    SYMMETRY-BASEL, 2023, 15 (01):
  • [22] Existence results for Langevin equations involving generalized Liouville-Caputo fractional derivatives with non-local boundary conditions
    Dhaniya, Sombir
    Kumar, Anoop
    Khan, Aziz
    Abdeljawad, Thabet
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 90 : 153 - 160
  • [23] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Ziyad A. Alhussain
    Habib Rebei
    Hafedh Rguigui
    Anis Riahi
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 435 - 449
  • [24] Effects of vaccination on measles dynamics under fractional conformable derivative with Liouville-Caputo operator
    Qureshi, Sania
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (01):
  • [25] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 435 - 449
  • [26] Chaotic Attractors with Fractional Conformable Derivatives in the Liouville-Caputo Sense and Its Dynamical Behaviors
    Solis Perez, Jesus Emmanuel
    Francisco Gomez-Aguilar, Jose
    Baleanu, Dumitru
    Tchier, Fairouz
    ENTROPY, 2018, 20 (05)
  • [27] Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 85 : 108 - 117
  • [28] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485
  • [29] FRACTIONAL ADAMS-BASHFORTH SCHEME WITH THE LIOUVILLE-CAPUTO DERIVATIVE AND APPLICATION TO CHAOTIC SYSTEMS
    Owolabi, Kolade M.
    Atangana, Abdon
    Francisco Gomez-Aguilar, Jose
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2455 - 2469
  • [30] Generalized Liouville-Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions
    Alsaedi, Ahmed
    Alghanmi, Madeaha
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    SYMMETRY-BASEL, 2018, 10 (12):