Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of Liouville-Caputo type

被引:14
|
作者
Escalante-Martinez, J. E. [1 ]
Gomez-Aguilar, J. F. [2 ]
Calderon-Ramon, C. [1 ]
Aguilar-Melendez, A. [3 ]
Padilla-Longoria, P. [4 ]
机构
[1] Univ Veracruzana, Fac Ingn Mecan & Elect, Av Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[2] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Univ Veracruzana, Fac Ingn Civil, Av Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[4] Univ Nacl Autonoma Mexico, IIMAS, Circuito Escolar, Cd Univ, Mexico City 04510, DF, Mexico
关键词
Fractional calculus; Liouville-Caputo fractional derivative; synchronicity; fireflies; bioluminescence; Adams-Bashforth-Moulton method; CALCULUS;
D O I
10.1142/S1793524518500419
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a system of fractional differential equations that model the synchronized bioluminescence behavior of a set of fireflies put on two spatial arrangements is presented; the alternative representation of these equations contains fractional operators of Liouville-Caputo type. The objective of the model is to qualitatively recover synchronization and show that it is persistent. It is shown that the effort made by each firefly glow changes with respect to the number of male competitors and the distance between them. The conditions on biological parameters are interpreted.
引用
下载
收藏
页数:25
相关论文
共 50 条
  • [1] Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order
    Coronel-Escamilla, A.
    Gomez-Aguilar, J. F.
    Torres, L.
    Escobar-Jimenez, R. F.
    Valtierra-Rodriguez, M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 487 : 1 - 21
  • [2] Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators
    Almusawa, Musawa Yahya
    Mohammed, Pshtiwan Othman
    CHAOS SOLITONS & FRACTALS, 2023, 176
  • [3] Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense
    Gomez-Aguilar, J. F.
    Atangana, Abdon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (02):
  • [4] Combined Liouville-Caputo Fractional Differential Equation
    Omaba, McSylvester Ejighikeme
    Al Sulaimani, Hamdan
    Mukiawa, Soh Edwin
    Enyi, Cyril Dennis
    Apalara, Tijani Abdul-Aziz
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [5] Fractional conformable derivatives of Liouville-Caputo type with low-fractionality
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Taneco-Hernandez, M. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 503 : 424 - 438
  • [6] Theoretical Investigation of Fractional Estimations in Liouville-Caputo Operators of Mixed Order with Applications
    Mohammed, Pshtiwan Othman
    Lupas, Alina Alb
    Agarwal, Ravi P.
    Yousif, Majeed A.
    Al-Sarairah, Eman
    Abdelwahed, Mohamed
    AXIOMS, 2024, 13 (08)
  • [7] Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense
    J. F. Gómez-Aguilar
    Abdon Atangana
    The European Physical Journal Plus, 132
  • [8] A Study of Monotonicity Analysis for the Delta and Nabla Discrete Fractional Operators of the Liouville-Caputo Family
    Mohammed, Pshtiwan Othman
    Goodrich, Christopher S. S.
    Srivastava, Hari Mohan
    Al-Sarairah, Eman
    Hamed, Y. S.
    AXIOMS, 2023, 12 (02)
  • [9] A Study of Positivity Analysis for Difference Operators in the Liouville-Caputo Setting
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Guirao, Juan Luis G.
    Baleanu, Dumitru
    Al-Sarairah, Eman
    Jan, Rashid
    SYMMETRY-BASEL, 2023, 15 (02):
  • [10] On Some Inequalities Involving Liouville-Caputo Fractional Derivatives and Applications to Special Means of Real Numbers
    Samet, Bessem
    Aydi, Hassen
    MATHEMATICS, 2018, 6 (10)