Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators

被引:8
|
作者
Almusawa, Musawa Yahya [1 ]
Mohammed, Pshtiwan Othman [2 ]
机构
[1] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] Univ Sulaimani, Coll Educ, Dept Biol, Sulaimani 46001, Kurdistan Regio, Iraq
关键词
Discrete fractional calculus; Liouville-Caputo fractio n a l operator s; Sequential fractional systems; CALCULUS;
D O I
10.1016/j.chaos.2023.114098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the Liouville-Caputo fractional difference method for the numerical evolution of the sequential differential equation of fractional order. Meanwhile, some binomial coefficients are considered in discrete fractional calculus to find and determine the corresponding sequence of continuous fractional order equations. Finally, a standard numerical test is offered in detai l to demonstrate the validity of the main theorem.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] A Study of Monotonicity Analysis for the Delta and Nabla Discrete Fractional Operators of the Liouville-Caputo Family
    Mohammed, Pshtiwan Othman
    Goodrich, Christopher S. S.
    Srivastava, Hari Mohan
    Al-Sarairah, Eman
    Hamed, Y. S.
    AXIOMS, 2023, 12 (02)
  • [2] Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Elattar, Ehab E.
    Hamed, Y. S.
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 3058 - 3070
  • [3] Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order
    Coronel-Escamilla, A.
    Gomez-Aguilar, J. F.
    Torres, L.
    Escobar-Jimenez, R. F.
    Valtierra-Rodriguez, M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 487 : 1 - 21
  • [4] A Study of Positivity Analysis for Difference Operators in the Liouville-Caputo Setting
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Guirao, Juan Luis G.
    Baleanu, Dumitru
    Al-Sarairah, Eman
    Jan, Rashid
    SYMMETRY-BASEL, 2023, 15 (02):
  • [5] Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of Liouville-Caputo type
    Escalante-Martinez, J. E.
    Gomez-Aguilar, J. F.
    Calderon-Ramon, C.
    Aguilar-Melendez, A.
    Padilla-Longoria, P.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (03)
  • [6] Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Ryoo, Cheon Seoung
    Hamed, Y. S.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (06)
  • [7] Combined Liouville-Caputo Fractional Differential Equation
    Omaba, McSylvester Ejighikeme
    Al Sulaimani, Hamdan
    Mukiawa, Soh Edwin
    Enyi, Cyril Dennis
    Apalara, Tijani Abdul-Aziz
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [8] Fractional conformable derivatives of Liouville-Caputo type with low-fractionality
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Taneco-Hernandez, M. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 503 : 424 - 438
  • [9] Theoretical Investigation of Fractional Estimations in Liouville-Caputo Operators of Mixed Order with Applications
    Mohammed, Pshtiwan Othman
    Lupas, Alina Alb
    Agarwal, Ravi P.
    Yousif, Majeed A.
    Al-Sarairah, Eman
    Abdelwahed, Mohamed
    AXIOMS, 2024, 13 (08)
  • [10] Relationships between the discrete Riemann-Liouville and Liouville-Caputo fractional differences and their associated convexity results
    Guirao, Juan L. G.
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Abualrub, Marwan S.
    AIMS MATHEMATICS, 2022, 7 (10): : 18127 - 18141