Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

被引:14
|
作者
Bragard, Jean [1 ]
Simic, Ana [1 ]
Elorza, Jorge [1 ]
Grigoriev, Roman O. [2 ]
Cherry, Elizabeth M. [3 ]
Gilmour, Robert F., Jr. [4 ]
Otani, Niels F. [3 ,5 ]
Fenton, Flavio H. [2 ]
机构
[1] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[4] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
[5] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
FAR-FIELD; DEFIBRILLATION EFFICACY; WAVE-FORMS; MECHANISM; ALTERNANS; MODEL; ANNIHILATION; FIBRILLATION; STIMULATION; SIMULATION;
D O I
10.1063/1.4829632
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 x 10(6) simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] SHOCK SOURCE AND INTENSITY - VARIABLES IN SHOCK-INDUCED FIGHTING
    FOLLICK, MJ
    KNUTSON, JF
    BEHAVIOR RESEARCH METHODS & INSTRUMENTATION, 1974, 6 (05): : 477 - 480
  • [12] Shock-induced α-ω transition in titanium
    Greeff, CW
    Trinkle, DR
    Albers, RC
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (05) : 2221 - 2226
  • [13] SHOCK-INDUCED ALTERATIONS IN HEMOSTASIS
    HEENE, DL
    KIRSCHSTEIN, W
    DEMPFLE, CE
    KLINISCHE WOCHENSCHRIFT, 1986, 64 : 14 - 17
  • [14] SHOCK-INDUCED TEMPERATURES OF MGO
    SVENDSEN, B
    AHRENS, TJ
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1987, 91 (03): : 667 - 691
  • [15] Shock-induced polarization of materials
    Goncharov, AI
    Soloviev, SP
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2004, 40 (06) : 658 - 662
  • [16] SHOCK-INDUCED THERMAL RUNAWAY
    JACKSON, TL
    KAPILA, AK
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (01) : 130 - 137
  • [17] Shock-induced luminescence in polymethylmethacrylate
    Proud, WG
    Bourne, NK
    Field, JE
    SHOCK COMPRESSION OF CONDENSED MATTER - 1997, 1998, 429 : 801 - 804
  • [18] SHOCK-INDUCED STRUCTURES IN COPPER
    Meshcheryakov, Yu. I.
    Zhigacheva, N. I.
    Divakov, A. K.
    Konovalov, G. V.
    Barakhtin, B. K.
    Razorenov, S. V.
    Vyvenko, O. V.
    Bondarenko, A. S.
    Khomskaya, I. V.
    MATERIALS PHYSICS AND MECHANICS, 2015, 24 (04): : 347 - 358
  • [19] ANAPHYLACTIC SHOCK-INDUCED BY KETOPROFEN
    TARDY, B
    PAGE, Y
    GUY, C
    COMTET, C
    THEVENET, D
    BERTRAND, M
    BERTRAND, JC
    THERAPIE, 1989, 44 (01): : 68 - 68
  • [20] SHOCK-INDUCED CHANGES IN SOLIDS
    WIEGAND, DA
    ABEL, J
    PINTO, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 679 - 679