Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

被引:14
|
作者
Bragard, Jean [1 ]
Simic, Ana [1 ]
Elorza, Jorge [1 ]
Grigoriev, Roman O. [2 ]
Cherry, Elizabeth M. [3 ]
Gilmour, Robert F., Jr. [4 ]
Otani, Niels F. [3 ,5 ]
Fenton, Flavio H. [2 ]
机构
[1] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[4] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
[5] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
FAR-FIELD; DEFIBRILLATION EFFICACY; WAVE-FORMS; MECHANISM; ALTERNANS; MODEL; ANNIHILATION; FIBRILLATION; STIMULATION; SIMULATION;
D O I
10.1063/1.4829632
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 x 10(6) simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Shock-induced focal arrhythmias: Not driven by calcium?
    Lou, Qing
    Fedorov, Vadim V.
    HEART RHYTHM, 2012, 9 (01) : 105 - 106
  • [2] The biphasic mystery: Why a biphasic shock is more effective than a monophasic shock for defibrillation
    Keener, JP
    Lewis, TJ
    JOURNAL OF THEORETICAL BIOLOGY, 1999, 200 (01) : 1 - 17
  • [3] Termination of spiral waves during cardiac fibrillation via shock-induced phase resetting
    Gray, RA
    Chattipakorn, N
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (13) : 4672 - 4677
  • [4] Ionic mechanism of shock-induced arrhythmias: Role of intracellular calcium
    Sowell, Brittany
    Fast, Vladimir G.
    HEART RHYTHM, 2012, 9 (01) : 96 - 104
  • [5] HUMORAL CHANGES IN SHOCK-INDUCED BY CARDIAC-TAMPONADE
    KASZAKI, J
    NAGY, S
    TARNOKY, K
    LACZI, F
    VECSERNYES, M
    BOROS, M
    CIRCULATORY SHOCK, 1989, 29 (02) : 143 - 153
  • [6] SHOCK-INDUCED LUMINESCENCE
    COLEBURN, NL
    SOLOW, M
    WILEY, RC
    JOURNAL OF APPLIED PHYSICS, 1965, 36 (02) : 507 - &
  • [7] SHOCK-INDUCED DISLOCATIONS
    HORNBOGEN, E
    ACTA METALLURGICA, 1962, 10 (OCT): : 978 - &
  • [8] EFFECT OF SHOCK DURATION ON SHOCK-INDUCED FIGHTING
    AZRIN, NH
    ULRICH, RE
    NORMAN, DG
    HUTCHINS.RR
    JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR, 1964, 7 (01) : 9 - &
  • [9] Biphasic versus monophasic shock for external cardioversion of atrial flutter
    Mortensen, Kai
    Risius, Tim
    Schwemer, Tjark F.
    Aydin, Muhammet Ali
    Koester, Ralf
    Klemm, Hanno U.
    Lutomsky, Boris
    Meinertz, Thomas
    Ventura, Rodolfo
    Willems, Stephan
    CARDIOLOGY, 2008, 111 (01) : 57 - 62
  • [10] Shock-induced transmembrane potential fields in a model of cardiac microstructure
    Trew, M
    Sands, GB
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2005, 16 (09) : 1024 - 1024