The zero-inflated Conway-Maxwell-Poisson distribution: Bayesian inference, regression modeling and influence diagnostic

被引:29
|
作者
Barriga, Gladys D. C. [1 ]
Louzada, Francisco [2 ]
机构
[1] Sao Paulo State Univ, Fac Engn Bauru, Sao Paulo, Brazil
[2] Univ Sao Paulo, Dept Appl Maths & Stat, BR-05508 Sao Paulo, Brazil
关键词
Bayesian inference; COM-Poisson distribution; Kullback-Leibler distance; Zero-inflated models; BINOMIAL REGRESSION; DIVERGENCE MEASURES; COUNT DATA;
D O I
10.1016/j.stamet.2013.11.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose the zero-inflated COM-Poisson distribution. We develop a Bayesian analysis for our model via on Markov chain Monte Carlo methods. We discuss regression modeling and model selection, as well as, develop case deletion influence diagnostics for the joint posterior distribution based on the psi-divergence, which has several divergence measures as particular cases, such as the Kullback-Leibler (K-L), J-distance, L-1 norm and chi(2)-square divergence measures. The performance of our approach is illustrated in an artificial dataset as well as in a real dataset on an apple cultivar experiment. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 50 条
  • [31] Analyzing longitudinal clustered count data with zero inflation: Marginal modeling using the Conway-Maxwell-Poisson distribution
    Kang, Tong
    Levy, Steven M.
    Datta, Somnath
    BIOMETRICAL JOURNAL, 2021, 63 (04) : 761 - 786
  • [32] Marginalized zero-inflated generalized Poisson regression
    Famoye, Felix
    Preisser, John S.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (07) : 1247 - 1259
  • [33] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180
  • [34] Zero-inflated Poisson regression mixture model
    Lim, Hwa Kyung
    Li, Wai Keung
    Yu, Philip L. H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 151 - 158
  • [35] Robust Estimation for Zero-Inflated Poisson Regression
    Hall, Daniel B.
    Shen, Jing
    SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 237 - 252
  • [36] Zero-Inflated Poisson Regression for Longitudinal Data
    Hasan, M. Tariqul
    Sneddon, Gary
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (03) : 638 - 653
  • [37] BIVARIATE CONWAY-MAXWELL-POISSON PASCAL DISTRIBUTION WITH DATA ANALYSIS
    Thilagarathinam, S.
    Saavithri, V.
    Seethalakshmi, R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 504 - 512
  • [38] Three-level zero-inflated Conway–Maxwell–Poisson regression model for analyzing dispersed clustered count data with extra zeros
    Somayeh Ghorbani Gholiabad
    Abbas Moghimbeigi
    Javad Faradmal
    Sankhya B, 2021, 83 : 415 - 439
  • [39] An asymptotic expansion for the normalizing constant of the Conway-Maxwell-Poisson distribution
    Gaunt, Robert E.
    Iyengar, Satish
    Daalhuis, Adri B. Olde
    Simsek, Burcin
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (01) : 163 - 180
  • [40] An Almost Unbiased Ridge Estimator for the Conway-Maxwell-Poisson Regression Model
    Sami, Faiza
    Amin, Muhammad
    Butt, Muhammad Moeen
    Yasin, Seyab
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (04) : 1209 - 1219