The zero-inflated Conway-Maxwell-Poisson distribution: Bayesian inference, regression modeling and influence diagnostic

被引:29
|
作者
Barriga, Gladys D. C. [1 ]
Louzada, Francisco [2 ]
机构
[1] Sao Paulo State Univ, Fac Engn Bauru, Sao Paulo, Brazil
[2] Univ Sao Paulo, Dept Appl Maths & Stat, BR-05508 Sao Paulo, Brazil
关键词
Bayesian inference; COM-Poisson distribution; Kullback-Leibler distance; Zero-inflated models; BINOMIAL REGRESSION; DIVERGENCE MEASURES; COUNT DATA;
D O I
10.1016/j.stamet.2013.11.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose the zero-inflated COM-Poisson distribution. We develop a Bayesian analysis for our model via on Markov chain Monte Carlo methods. We discuss regression modeling and model selection, as well as, develop case deletion influence diagnostics for the joint posterior distribution based on the psi-divergence, which has several divergence measures as particular cases, such as the Kullback-Leibler (K-L), J-distance, L-1 norm and chi(2)-square divergence measures. The performance of our approach is illustrated in an artificial dataset as well as in a real dataset on an apple cultivar experiment. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 50 条
  • [11] Zero-inflated sum of Conway-Maxwell-Poissons (ZISCMP) regression
    Sellers, Kimberly F.
    Young, Derek S.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (09) : 1649 - 1673
  • [12] Default Bayesian testing for the zero-inflated Poisson distribution
    Han, Yewon
    Hwang, Haewon
    Ng, Hon keung tony
    Kim, Seong w.
    STATISTICS AND ITS INTERFACE, 2024, 17 (04) : 623 - 634
  • [13] Conjugate Analysis of the Conway-Maxwell-Poisson Distribution
    Kadane, Joseph B.
    Shmueli, Galit
    Minka, Thomas P.
    Borle, Sharad
    Boatwright, Peter
    BAYESIAN ANALYSIS, 2006, 1 (02): : 363 - 374
  • [14] Zero-inflated models and estimation in zero-inflated Poisson distribution
    Wagh, Yogita S.
    Kamalja, Kirtee K.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2248 - 2265
  • [15] Zero-Inflated Beta Distribution Regression Modeling
    Tang, Becky
    Frye, Henry A.
    Gelfand, Alan E.
    Silander, John A.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2023, 28 (01) : 117 - 137
  • [16] Fast Bayesian Inference for Spatial Mean-Parameterized Conway-Maxwell-Poisson Models
    Kang, Bokgyeong
    Hughes, John
    Haran, Murali
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [17] Zero-Inflated Beta Distribution Regression Modeling
    Becky Tang
    Henry A. Frye
    Alan E. Gelfand
    John A. Silander
    Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 117 - 137
  • [18] A longitudinal Bayesian mixed effects model with hurdle Conway-Maxwell-Poisson distribution
    Kang, Tong
    Gaskins, Jeremy
    Levy, Steven
    Datta, Somnath
    STATISTICS IN MEDICINE, 2021, 40 (06) : 1336 - 1356
  • [19] Bayesian bivariate Conway-Maxwell-Poisson regression model for correlated count data in sports
    Florez, Mauro
    Guindani, Michele
    Vannucci, Marina
    JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2025, 21 (01) : 51 - 71
  • [20] Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics
    Xie, Feng-Chang
    Lin, Jin-Guan
    Wei, Bo-Cheng
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (06) : 1383 - 1392