Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics

被引:12
|
作者
Xie, Feng-Chang [1 ]
Lin, Jin-Guan [2 ]
Wei, Bo-Cheng [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
关键词
Kullback-Leibler divergence; case deletion; Bayesian inference; generalized Poisson distribution; zero inflation; SCORE TEST; COUNT DATA;
D O I
10.1080/02664763.2013.871508
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Count data with excess zeros arises in many contexts. Here our concern is to develop a Bayesian analysis for the zero-inflated generalized Poisson (ZIGP) regression model to address this problem. This model provides a useful generalization of zero-inflated Poisson model since the generalized Poisson distribution is overdispersed/underdispersed relative to Poisson. Due to the complexity of the ZIGP model, Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the considered model. Additionally, some discussions on the model selection criteria are presented and a Bayesian case deletion influence diagnostics is investigated for the joint posterior distribution based on the Kullback-Leibler divergence. Finally, a simulation study and a psychological example are given to illustrate our methodology.
引用
收藏
页码:1383 / 1392
页数:10
相关论文
共 50 条
  • [1] Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model
    Garay, Aldo M.
    Lachos, Victor H.
    Bolfarine, Heleno
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1148 - 1165
  • [2] Estimation and influence diagnostics for zero-inflated hyper-Poisson regression model: full Bayesian analysis
    Cancho, Vicente G.
    Bao Yiqi
    Fiorucci, Jose A.
    Barriga, Gladys D. C.
    Dey, Dipak K.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (11) : 2741 - 2759
  • [3] A Bayesian analysis of zero-inflated generalized Poisson model
    Angers, JF
    Biswas, A
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (1-2) : 37 - 46
  • [4] Bayesian inference and diagnostics in zero-inflated generalized power series regression model
    Barriga, Gladys D. Cacsire
    Dey, Dipak K.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (22) : 6553 - 6568
  • [5] Marginalized zero-inflated generalized Poisson regression
    Famoye, Felix
    Preisser, John S.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (07) : 1247 - 1259
  • [6] Functional Form for the Zero-Inflated Generalized Poisson Regression Model
    Zamani, Hossein
    Ismail, Noriszura
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (03) : 515 - 529
  • [7] Robust Estimation for Zero-Inflated Poisson Regression
    Hall, Daniel B.
    Shen, Jing
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (02) : 237 - 252
  • [8] Score test for testing zero-inflated Poisson regression against zero-inflated generalized Poisson alternatives
    Zamani, Hossein
    Ismail, Noriszura
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (09) : 2056 - 2068
  • [9] Semi Varying Coefficient Zero-Inflated Generalized Poisson Regression Model
    Zha, Weihua
    Zhang, Riquan
    Liu, Jicai
    Lv, Yazhao
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (01) : 171 - 185
  • [10] Zero-inflated Poisson regression mixture model
    Lim, Hwa Kyung
    Li, Wai Keung
    Yu, Philip L. H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 151 - 158