Zero-inflated Poisson regression mixture model

被引:32
|
作者
Lim, Hwa Kyung [1 ]
Li, Wai Keung [1 ]
Yu, Philip L. H. [1 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
关键词
Zero-inflation; Heterogeneity; Finite mixture model; Poisson; EM algorithm; MAXIMUM LIKELIHOOD ESTIMATION;
D O I
10.1016/j.csda.2013.06.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Excess zeros and overdispersion are common phenomena that limit the use of traditional Poisson regression models for modeling count data. Both excess zeros and overdispersion caused by unobserved heterogeneity are accounted for by the proposed zero-inflated Poisson (ZIP) regression mixture model. To estimate the parameters of the model, an EM algorithm with an embedded iteratively reweighted least squares method is implemented. The parameter estimation performance of the proposed model is evaluated through simulation studies. The ZIP regression mixture model is applied to the DMFT index dataset, which contains excess zeros and overdispersion. Comparisons of several other models commonly used for such data with the ZIP regression mixture model show that, in general, the latter model fits the data well. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 158
页数:8
相关论文
共 50 条
  • [1] Score test for testing zero-inflated Poisson regression against zero-inflated generalized Poisson alternatives
    Zamani, Hossein
    Ismail, Noriszura
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (09) : 2056 - 2068
  • [2] Exploring a zero-inflated Poisson regression model of software quality
    Khoshgoftaar, TM
    Gao, KH
    Szabo, RM
    [J]. SEVENTH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, 2002, : 20 - 24
  • [3] A marginalized zero-inflated Poisson regression model with random effects
    Long, D. Leann
    Preisser, John S.
    Herring, Amy H.
    Golin, Carol E.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2015, 64 (05) : 815 - 830
  • [4] MODIFIED RIDGE ESTIMATOR IN ZERO-INFLATED POISSON REGRESSION MODEL
    Younus, Farah Abdul Ghani
    Othman, Rafal Adeeb
    Algamal, Zakariya Yahya
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2022, 18 : 1245 - 1250
  • [5] Some ridge regression estimators for the zero-inflated Poisson model
    Kibria, B. M. Golam
    Mansson, Kristofer
    Shukur, Ghazi
    [J]. JOURNAL OF APPLIED STATISTICS, 2013, 40 (04) : 721 - 735
  • [6] A spatial zero-inflated poisson regression model for oak regeneration
    Stephen L. Rathbun
    Songlin Fei
    [J]. Environmental and Ecological Statistics, 2006, 13
  • [7] Bootstrap tests for overdispersion in a zero-inflated Poisson regression model
    Jung, BC
    Jhun, M
    Lee, JW
    [J]. BIOMETRICS, 2005, 61 (02) : 626 - 628
  • [8] Marginalized zero-inflated generalized Poisson regression
    Famoye, Felix
    Preisser, John S.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (07) : 1247 - 1259
  • [9] A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model
    Gul Inan
    John Preisser
    Kalyan Das
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2018, 23 : 113 - 128
  • [10] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180