FINITE REPETITION THRESHOLD FOR LARGE ALPHABETS

被引:1
|
作者
Badkobeh, Golnaz [1 ]
Crochemore, Maxime [2 ]
Rao, Michael [3 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
[2] Univ Paris Est, F-77454 Marne La Vallee, France
[3] Univ Lyon, UCBL, ENS Lyon, LIP, Lyon, France
来源
关键词
Morphisms; repetitions in words; Dejean's threshold; INFINITE BINARY WORDS; FEWEST REPETITIONS; DEJEANS CONJECTURE; LARGE SQUARES; POWERS; GROWTH;
D O I
10.1051/ita/2014017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the finite repetition threshold for k-letter alphabets, k >= 4, that is the smallest number r for which there exists an infinite r(+)-free word containing a finite number of r-powers. We show that there exists an infinite Dejean word on a 4-letter alphabet (i.e. a word without factors of exponent more than 7/5) containing only two 7/5-powers. For a 5-letter alphabet, we show that there exists an infinite Dejean word containing only 60 5/4-powers, and we conjecture that this number can be lowered to 45. Finally we show that the finite repetition threshold for k letters is equal to the repetition threshold for k letters, for every k >= 6.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 50 条
  • [1] On the repetition threshold for large alphabets
    Carpi, Arturo
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2006, PROCEEDINGS, 2006, 4162 : 226 - 237
  • [2] The weak circular repetition threshold over large alphabets
    Mol, Lucas
    Rampersad, Narad
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2020, 54
  • [3] Finite-Repetition threshold for infinite ternary words
    Badkobeh, Golnaz
    Crochemore, Maxime
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2011, (63): : 37 - 43
  • [4] Efficien Finite-State Decoding of Rice Codes for Large Alphabets
    Ozbey, Can
    Dincsoy, Ozge
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 280 - 284
  • [5] Large alphabets and incompressibility
    Gagie, Travis
    INFORMATION PROCESSING LETTERS, 2006, 99 (06) : 246 - 251
  • [6] Cyclically repetition-free words on small alphabets
    Harju, Tero
    Nowotka, Dirk
    INFORMATION PROCESSING LETTERS, 2010, 110 (14-15) : 591 - 595
  • [7] On finite alphabets and infinite bases
    Chen, Taolue
    Fokkink, Wan
    Luttik, Bas
    Nain, Sumit
    INFORMATION AND COMPUTATION, 2008, 206 (05) : 492 - 519
  • [8] MINIMAX CODES FOR FINITE ALPHABETS
    RISSANEN, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) : 389 - 392
  • [9] Compressing Multisets With Large Alphabets
    Severo, Daniel
    Townsend, James
    Khisti, Ashish
    Makhzani, Alireza
    Ullrich, Karen
    IEEE Journal on Selected Areas in Information Theory, 2022, 3 (04): : 605 - 615
  • [10] Minimax Redundancy for Large Alphabets
    Szpankowski, Wojciech
    Weinberger, Marcelo J.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1488 - 1492