On the repetition threshold for large alphabets

被引:0
|
作者
Carpi, Arturo [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06100 Perugia, Italy
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The (maximal) exponent of a finite non-empty word is the ratio among its length and its period. Dejean (1972) conjectured that for any n >= 5 there exists an infinite word over n letters with no factor of exponent larger than n/(n - 1). We prove that this conjecture is true for n > 38.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 50 条
  • [1] FINITE REPETITION THRESHOLD FOR LARGE ALPHABETS
    Badkobeh, Golnaz
    Crochemore, Maxime
    Rao, Michael
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2014, 48 (04): : 419 - 430
  • [2] The weak circular repetition threshold over large alphabets
    Mol, Lucas
    Rampersad, Narad
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2020, 54
  • [3] Large alphabets and incompressibility
    Gagie, Travis
    INFORMATION PROCESSING LETTERS, 2006, 99 (06) : 246 - 251
  • [4] Cyclically repetition-free words on small alphabets
    Harju, Tero
    Nowotka, Dirk
    INFORMATION PROCESSING LETTERS, 2010, 110 (14-15) : 591 - 595
  • [5] Compressing Multisets With Large Alphabets
    Severo, Daniel
    Townsend, James
    Khisti, Ashish
    Makhzani, Alireza
    Ullrich, Karen
    IEEE Journal on Selected Areas in Information Theory, 2022, 3 (04): : 605 - 615
  • [6] Minimax Redundancy for Large Alphabets
    Szpankowski, Wojciech
    Weinberger, Marcelo J.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1488 - 1492
  • [7] A generalization of repetition threshold
    Ilie, L
    Ochem, P
    Shallit, J
    THEORETICAL COMPUTER SCIENCE, 2005, 345 (2-3) : 359 - 369
  • [8] A generalization of repetition threshold
    Ilie, L
    Ochem, P
    Shallit, J
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 818 - 826
  • [9] The Undirected Repetition Threshold
    Currie, James D.
    Mol, Lucas
    COMBINATORICS ON WORDS, WORDS 2019, 2019, 11682 : 145 - 158
  • [10] ON ABELIAN REPETITION THRESHOLD
    Samsonov, Alexey V.
    Shur, Arseny M.
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2012, 46 (01): : 147 - 163