On the repetition threshold for large alphabets

被引:0
|
作者
Carpi, Arturo [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06100 Perugia, Italy
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The (maximal) exponent of a finite non-empty word is the ratio among its length and its period. Dejean (1972) conjectured that for any n >= 5 there exists an infinite word over n letters with no factor of exponent larger than n/(n - 1). We prove that this conjecture is true for n > 38.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 50 条
  • [21] Run Compressed Rank/Select for Large Alphabets
    Fuentes-Sepulveda, Jose
    Karkkainen, Juha
    Kosolobov, Dmitry
    Puglisi, Simon J.
    2018 DATA COMPRESSION CONFERENCE (DCC 2018), 2018, : 315 - 324
  • [22] Longest Common Abelian Factors and Large Alphabets
    Badkobeh, Golnaz
    Gagie, Travis
    Grabowski, Szymon
    Nakashima, Yuto
    Puglisi, Simon J.
    Sugimoto, Shiho
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2016, 2016, 9954 : 254 - 259
  • [23] GRAPHS ON ALPHABETS AS MODELS FOR LARGE INTERCONNECTION NETWORKS
    GOMEZ, J
    FIOL, MA
    YEBRA, JLA
    DISCRETE APPLIED MATHEMATICS, 1992, 37-8 : 227 - 243
  • [24] On Dejean's conjecture over large alphabets
    Carpi, Arturo
    THEORETICAL COMPUTER SCIENCE, 2007, 385 (1-3) : 137 - 151
  • [25] Algorithms for modeling distributions over large alphabets
    Orlitsky, A
    Sajama
    Santhanam, N
    Viswanathan, K
    Zhang, JN
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 306 - 306
  • [26] Universal compression for IID sources with large alphabets
    Shamir, GI
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 24 - 24
  • [27] Bordered Conjugates of Words over Large Alphabets
    Harju, Tero
    Nowotka, Dirk
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [28] Optimal suffix tree construction with large alphabets
    Farach, M
    38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, : 137 - 143
  • [29] Bounds for covering codes over large alphabets
    Kéri, G
    Östergård, PRJ
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 37 (01) : 45 - 60
  • [30] The repetition threshold for binary rich words
    Currie, James D.
    Mol, Lucas
    Rampersad, Narad
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2020, 22 (01):