FINITE REPETITION THRESHOLD FOR LARGE ALPHABETS

被引:1
|
作者
Badkobeh, Golnaz [1 ]
Crochemore, Maxime [2 ]
Rao, Michael [3 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
[2] Univ Paris Est, F-77454 Marne La Vallee, France
[3] Univ Lyon, UCBL, ENS Lyon, LIP, Lyon, France
来源
关键词
Morphisms; repetitions in words; Dejean's threshold; INFINITE BINARY WORDS; FEWEST REPETITIONS; DEJEANS CONJECTURE; LARGE SQUARES; POWERS; GROWTH;
D O I
10.1051/ita/2014017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the finite repetition threshold for k-letter alphabets, k >= 4, that is the smallest number r for which there exists an infinite r(+)-free word containing a finite number of r-powers. We show that there exists an infinite Dejean word on a 4-letter alphabet (i.e. a word without factors of exponent more than 7/5) containing only two 7/5-powers. For a 5-letter alphabet, we show that there exists an infinite Dejean word containing only 60 5/4-powers, and we conjecture that this number can be lowered to 45. Finally we show that the finite repetition threshold for k letters is equal to the repetition threshold for k letters, for every k >= 6.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 50 条
  • [21] Near-Optimal Finite-Length Scaling for Polar Codes over Large Alphabets
    Pfister, Henry D.
    Urbanke, Rudiger
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 215 - 219
  • [22] Near-Optimal Finite-Length Scaling for Polar Codes Over Large Alphabets
    Pfister, Henry D.
    Urbanke, Ruediger L.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (09) : 5643 - 5655
  • [23] Finite Uniform Bisimulations for Linear Systems With Finite Input Alphabets
    Fan, Donglei
    Tarraf, Danielle C.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 4144 - 4150
  • [24] CAPACITY OF RANDOM CHANNELS WITH LARGE ALPHABETS
    Sutter, Tobias
    Sutter, David
    Lygeros, John
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (04) : 813 - 835
  • [25] On Initialization of Finite State ρ/μ Approximations of Systems Over Finite Alphabets
    Fan, Donglei
    Tarraf, Danielle C.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 926 - 933
  • [26] Linear Congruences in Continued Fractions on Finite Alphabets
    I. D. Kan
    Mathematical Notes, 2018, 103 : 911 - 918
  • [27] Large quantum alphabets with a tiny footprint
    Nothlawala, Fazilah
    Forbes, Andrew
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [28] The repetition threshold of episturmian sequences
    Dvorakova, L'ubomira
    Pelantova, Edita
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [29] Bounds for the generalized repetition threshold
    Fiorenzi, Francesca
    Ochem, Pascal
    Vaslet, Elise
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (27) : 2955 - 2963
  • [30] Compressing Huffman Models on Large Alphabets
    Navarro, Gonzalo
    Ordonez, Alberto
    2013 DATA COMPRESSION CONFERENCE (DCC), 2013, : 381 - 390