FINITE REPETITION THRESHOLD FOR LARGE ALPHABETS

被引:1
|
作者
Badkobeh, Golnaz [1 ]
Crochemore, Maxime [2 ]
Rao, Michael [3 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
[2] Univ Paris Est, F-77454 Marne La Vallee, France
[3] Univ Lyon, UCBL, ENS Lyon, LIP, Lyon, France
来源
关键词
Morphisms; repetitions in words; Dejean's threshold; INFINITE BINARY WORDS; FEWEST REPETITIONS; DEJEANS CONJECTURE; LARGE SQUARES; POWERS; GROWTH;
D O I
10.1051/ita/2014017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the finite repetition threshold for k-letter alphabets, k >= 4, that is the smallest number r for which there exists an infinite r(+)-free word containing a finite number of r-powers. We show that there exists an infinite Dejean word on a 4-letter alphabet (i.e. a word without factors of exponent more than 7/5) containing only two 7/5-powers. For a 5-letter alphabet, we show that there exists an infinite Dejean word containing only 60 5/4-powers, and we conjecture that this number can be lowered to 45. Finally we show that the finite repetition threshold for k letters is equal to the repetition threshold for k letters, for every k >= 6.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 50 条
  • [31] Repetition threshold for circular words
    Gorbunova, Irina A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [32] Diletter circular codes over finite alphabets
    Fimmel, Elena
    Michel, Christian J.
    Struengrnann, Lutz
    MATHEMATICAL BIOSCIENCES, 2017, 294 : 120 - 129
  • [33] Compressed Sensing of Digital Signals with Finite Alphabets
    Xing, Zhengli
    Zhou, Jie
    Ye, Liangfeng
    Yan, Lun
    Li, Bing
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION PROBLEM-SOLVING (ICCP), 2015, : 211 - 214
  • [34] SPECTRAL NULLS AND CODING WITH LARGE ALPHABETS
    CALDERBANK, AR
    MAZO, JE
    IEEE COMMUNICATIONS MAGAZINE, 1991, 29 (12) : 58 - 67
  • [35] On finite alphabets and infinite bases III: Simulation
    Chen, Taolue
    Fokkink, Wen
    CONCUR 2006 - CONCURRENCY THEORY, PROCEEDINGS, 2006, 4137 : 421 - 434
  • [36] Classification of Homogeneous Data With Large Alphabets
    Kelly, Benjamin G.
    Wagner, Aaron B.
    Tularak, Thitidej
    Viswanath, Pramod
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 782 - 795
  • [37] Linear Congruences in Continued Fractions on Finite Alphabets
    Kan, I. D.
    MATHEMATICAL NOTES, 2018, 103 (5-6) : 911 - 918
  • [38] Polar Codes for Sources with Finite Reconstruction Alphabets
    Sahebi, Aria G.
    Pradhan, S. Sandeep
    2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 580 - 586
  • [39] Run Compressed Rank/Select for Large Alphabets
    Fuentes-Sepulveda, Jose
    Karkkainen, Juha
    Kosolobov, Dmitry
    Puglisi, Simon J.
    2018 DATA COMPRESSION CONFERENCE (DCC 2018), 2018, : 315 - 324
  • [40] Longest Common Abelian Factors and Large Alphabets
    Badkobeh, Golnaz
    Gagie, Travis
    Grabowski, Szymon
    Nakashima, Yuto
    Puglisi, Simon J.
    Sugimoto, Shiho
    STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2016, 2016, 9954 : 254 - 259