Positive Solutions for a High-Order Riemann-Liouville Type Fractional Integral Boundary Value Problem Involving Fractional Derivatives

被引:8
|
作者
Wang, Wuyang [1 ]
Ye, Jun [2 ]
Xu, Jiafa [3 ]
O'Regan, Donal [4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Bell Honors Sch, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
[3] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[4] Univ Galway, Sch Math & Stat Sci, Galway H91 TK33, Ireland
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 11期
关键词
Riemann-Liouville fractional differential equations; integral boundary value problems; positive solutions; fixed point index; DIFFERENTIAL-EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.3390/sym14112320
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, under some super- and sub-linear growth conditions, we study the existence of positive solutions for a high-order Riemann-Liouville type fractional integral boundary value problem involving fractional derivatives. Our analysis methods are based on the fixed point index and nonsymmetric property of the Green function. Additionally, we provide some valid examples to illustrate our main results.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Multiple positive solutions for nonlinear boundary value problem of fractional order differential equation with the Riemann-Liouville derivative
    Liu Yang
    Chunfang Shen
    Dapeng Xie
    Advances in Difference Equations, 2014
  • [22] The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative
    Saoudi, Kamel
    Agarwal, Praveen
    Kumam, Poom
    Ghanmi, Abdeljabbar
    Thounthong, Phatiphat
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [23] On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives
    Tran Bao Ngoc
    Zhou, Yong
    O'Regan, Donal
    Nguyen Huy Tuan
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [24] Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
    Qiu, Xiaowei
    Xu, Jiafa
    O'Regan, Donal
    Cui, Yujun
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [25] Existence of Positive Solutions to Boundary Value Problems with Mixed Riemann-Liouville and Quantum Fractional Derivatives
    Nyamoradi, Nemat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [26] Existence of the positive solutions for boundary value problems of mixed differential equations involving the Caputo and Riemann-Liouville fractional derivatives
    Liu, Yujing
    Yan, Chenguang
    Jiang, Weihua
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [27] THREE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATION WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Shen, Chunfang
    Zhou, Hui
    Yang, Liu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1227 - 1238
  • [28] A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES
    Gutierrez, Hernan A. Cuti
    Nyamoradi, Nemat
    Ledesma, Cesar E. Torres
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3496 - 3519
  • [29] POSITIVE SOLUTIONS FOR SUPERLINEAR RIEMANN-LIOUVILLE FRACTIONAL BOUNDARY-VALUE PROBLEMS
    Bachar, Imed
    Maagli, Habib
    Radulescu, Vicentiu D.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [30] ON THE SET OF SOLUTIONS OF FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL INCLUSIONS
    Abbas, Said
    Benchohra, Mouffak
    DEMONSTRATIO MATHEMATICA, 2013, 46 (02) : 271 - 281