A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

被引:1
|
作者
Gutierrez, Hernan A. Cuti [1 ]
Nyamoradi, Nemat [2 ]
Ledesma, Cesar E. Torres [1 ]
机构
[1] Univ Nacl Trujillo, Inst Invest Matemat, FCA Res Grp, FCFYM,Dept Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
来源
关键词
Riemann-Liouville and Caputo tempered fractional derivatives; impulsive effects; tempered fractional space of Sobolev type; variational meth- ods; HAMILTONIAN-SYSTEMS; EXISTENCE;
D O I
10.11948/20240068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.
引用
收藏
页码:3496 / 3519
页数:24
相关论文
共 50 条
  • [1] On Impulsive Boundary Value Problem with Riemann-Liouville Fractional Order Derivative
    Khan, Zareen A.
    Gul, Rozi
    Shah, Kamal
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [2] Fractional boundary value problems with Riemann-Liouville fractional derivatives
    Tan, Jingjing
    Cheng, Caozong
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [3] Fractional boundary value problems with Riemann-Liouville fractional derivatives
    Jingjing Tan
    Caozong Cheng
    Advances in Difference Equations, 2015
  • [4] A Fractional Boundary Value Problem with φ-Riemann-Liouville Fractional Derivative
    Ji, Dehong
    Yang, Yitao
    IAENG International Journal of Applied Mathematics, 2020, 50 (04) : 1 - 5
  • [5] On a singular Riemann-Liouville fractional boundary value problem with parameters
    Tudorache, Alexandru
    Luca, Rodica
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (01): : 151 - 168
  • [6] Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem
    Xie, Wenzhe
    Xiao, Jing
    Luo, Zhiguo
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives
    Fu, Zhengqing
    Bai, Shikun
    O'Regan, Donal
    Xu, Jiafa
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [8] EXISTENCE OF WEAK SOLUTIONS FOR A NEW CLASS OF FRACTIONAL BOUNDARY VALUE IMPULSIVE SYSTEMS WITH RIEMANN-LIOUVILLE DERIVATIVES
    Guefaifia, Rafik
    Boulaaras, Salah
    Kamache, Fares
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2021, 33 (03) : 301 - 313
  • [9] Boundary value problems with four orders of Riemann-Liouville fractional derivatives
    Niyom, Somboon
    Ntouyas, Sotiris K.
    Laoprasittichok, Sorasak
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [10] Boundary value problems with four orders of Riemann-Liouville fractional derivatives
    Somboon Niyom
    Sotiris K Ntouyas
    Sorasak Laoprasittichok
    Jessada Tariboon
    Advances in Difference Equations, 2016