A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

被引:1
|
作者
Gutierrez, Hernan A. Cuti [1 ]
Nyamoradi, Nemat [2 ]
Ledesma, Cesar E. Torres [1 ]
机构
[1] Univ Nacl Trujillo, Inst Invest Matemat, FCA Res Grp, FCFYM,Dept Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
来源
关键词
Riemann-Liouville and Caputo tempered fractional derivatives; impulsive effects; tempered fractional space of Sobolev type; variational meth- ods; HAMILTONIAN-SYSTEMS; EXISTENCE;
D O I
10.11948/20240068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.
引用
收藏
页码:3496 / 3519
页数:24
相关论文
共 50 条
  • [21] On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives
    Tran Bao Ngoc
    Zhou, Yong
    O'Regan, Donal
    Nguyen Huy Tuan
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [22] Boundary Layers in a Riemann-Liouville Fractional Derivative Two-Point Boundary Value Problem
    Luis Gracia, Jose
    Stynes, Martin
    BOUNDARY AND INTERIOR LAYERS, COMPUTATIONAL AND ASYMPTOTIC METHODS - BAIL 2014, 2015, 108 : 87 - 98
  • [23] On Riemann-Liouville and Caputo Impulsive Fractional Calculus
    De la Sen, M.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 231 - 236
  • [24] Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative
    Bai, Chuanzhi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 211 - 231
  • [25] On the Φ-tempered fractional differential systems of Riemann-Liouville type
    Ziane, Mohamed
    Zentar, Oualid
    Al Horani, Mohammed
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1487 - 1506
  • [26] ON TWO-ORDER FRACTIONAL BOUNDARY VALUE PROBLEM WITH GENERALIZED RIEMANN-LIOUVILLE DERIVATIVE
    Serrai, H.
    Tellab, B.
    Zennir, Kh.
    UFA MATHEMATICAL JOURNAL, 2023, 15 (02): : 135 - 156
  • [27] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [28] A Note on a Kirchhoff type Boundary Value Problem Involving Riemann-Liouville Fractional Derivative
    Rehman, Nadeem ur
    Alyami, Maryam Ahmed
    Alhirabi, Hawatin Mohammed
    Ghanmi, Abdeljabbar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [29] Lyapunov-type inequality for a Riemann-Liouville fractional differential boundary value problem
    Al-Qurashi, Maysaa
    Ragoub, Lakhdar
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (06): : 1447 - 1452
  • [30] On a Boundary Value Problem for an Equation of Mixed Type with a Riemann-Liouville Fractional Partial Derivative
    Repin, O. A.
    Frolov, A. A.
    DIFFERENTIAL EQUATIONS, 2016, 52 (10) : 1384 - 1388