On the Φ-tempered fractional differential systems of Riemann-Liouville type

被引:0
|
作者
Ziane, Mohamed [1 ]
Zentar, Oualid [2 ]
Al Horani, Mohammed [3 ]
机构
[1] Univ Tiaret, Dept Math, Tiaret, Algeria
[2] Univ Tiaret, Dept Comp Sci, Tiaret, Algeria
[3] Univ Jordan, Dept Math, Amman 11942, Jordan
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 03期
关键词
phi-tempered fractional derivative; Fixed point theorem; Existence and Ulam-Hyers stability;
D O I
10.1007/s41478-023-00686-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work investigates the existence of solutions for phi-tempered fractional differential systems. Schauder's and Banach's fixed point theorems are applied to obtain some existence results. Next, the stability in Ulam-Hyers sense are discussed. Finally, the validity of our results is illustrated through some examples.
引用
收藏
页码:1487 / 1506
页数:20
相关论文
共 50 条
  • [1] Some boundedness results for Ψ-Riemann-Liouville and Ψ-Riemann-Liouville tempered fractional integrals in R
    Ledesma, Cesar E. Torres
    Rodriguez, Jesus A.
    Zuniga, Felipe A.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [2] QUASILINEARIZATION FOR FRACTIONAL DIFFERENTIAL EQUATIONS OF RIEMANN-LIOUVILLE TYPE
    Liu, Zhenhai
    Wang, Rui
    Zhao, Jing
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 141 - 151
  • [3] Global attractivity for fractional differential equations of Riemann-Liouville type
    Tao Zhu
    Fractional Calculus and Applied Analysis, 2023, 26 : 2264 - 2280
  • [4] Global attractivity for fractional differential equations of Riemann-Liouville type
    Zhu, Tao
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) : 2264 - 2280
  • [5] Regional observability in the context of Riemann-Liouville fractional differential systems
    Ben Brahim, Hamza
    Zguaid, Khalid
    El Alaoui, Fatima Zahrae
    ASIAN JOURNAL OF CONTROL, 2025,
  • [6] Some boundedness results for Riemann-Liouville tempered fractional integrals
    César E. Torres Ledesma
    Hernán A. Cuti Gutierrez
    Jesús P. Avalos Rodríguez
    Willy Zubiaga Vera
    Fractional Calculus and Applied Analysis, 2024, 27 : 818 - 847
  • [7] Some boundedness results for Riemann-Liouville tempered fractional integrals
    Ledesma, Cesar E. Torres
    Gutierrez, Hernan A. Cuti
    Rodriguez, Jesus P. Avalos
    Vera, Willy Zubiaga
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 818 - 847
  • [8] EXISTENCE AND CONTINUATION THEOREMS OF RIEMANN-LIOUVILLE TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Kou, Chunhai
    Zhou, Huacheng
    Li, Changpin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [9] THE MULTIPLICITY SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS OF RIEMANN-LIOUVILLE TYPE
    Ma, Tianfu
    Yan, Baoqiang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 801 - 818
  • [10] The Multiplicity Solutions for Nonlinear Fractional Differential Equations of Riemann-Liouville Type
    Tianfu Ma
    Baoqiang Yan
    Fractional Calculus and Applied Analysis, 2018, 21 : 801 - 818