Measurement bias and effect restoration in causal inference

被引:117
|
作者
Kuroki, Manabu [1 ]
Pearl, Judea [2 ]
机构
[1] Inst Stat Math, Dept Data Sci, Tachikawa, Tokyo 1908562, Japan
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Causal diagram; Confounder; Instrumental variable method; Proxy variable; Regression coefficient; Total effect; INSTRUMENTAL VARIABLES; MODELS; MISCLASSIFICATION; ERRORS; BOUNDS;
D O I
10.1093/biomet/ast066
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper highlights several areas where graphical techniques can be harnessed to address the problem of measurement errors in causal inference. In particular, it discusses the control of unmeasured confounders in parametric and nonparametric models and the computational problem of obtaining bias-free effect estimates in such models. We derive new conditions under which causal effects can be restored by observing proxy variables of unmeasured confounders with/without external studies.
引用
收藏
页码:423 / 437
页数:15
相关论文
共 50 条
  • [1] Causal inference with measurement error in outcomes: Bias analysis and estimation methods
    Shu, Di
    Yi, Grace Y.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (07) : 2049 - 2068
  • [2] Measurement issues in causal inference
    Shear, Benjamin R.
    Briggs, Derek C.
    [J]. ASIA PACIFIC EDUCATION REVIEW, 2024, 25 (03) : 719 - 731
  • [3] A CAUSAL INFERENCE PERSPECTIVE ON COMPOSITIONAL DATA AND COLLIDER 'BIAS'
    Arnold, K. F.
    Berrie, L.
    Tennant, P. W. G.
    Gilthorpe, M. S.
    [J]. JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2019, 73 : A38 - A39
  • [4] Temporal aggregation bias and inference of causal regulatory networks
    Bay, SD
    Chrisman, L
    Pohorille, A
    Shrager, J
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2004, 11 (05) : 971 - 985
  • [5] Recovering from Selection Bias in Causal and Statistical Inference
    Bareinboim, Elias
    Tian, Jin
    Pearl, Judea
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2410 - 2416
  • [6] Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference
    Wachinger, Christian
    Becker, Benjamin Gutierrez
    Rieckmann, Anna
    Poelsterl, Sebastian
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 484 - 492
  • [7] Anchored Causal Inference in the Presence of Measurement Error
    Saeed, Basil
    Belyaeva, Anastasiya
    Wang, Yuhao
    Uhler, Caroline
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 619 - 628
  • [8] Causal inference challenges in social epidemiology: Bias, specificity, and imagination
    Glymour, M. Maria
    Rudolph, Kara E.
    [J]. SOCIAL SCIENCE & MEDICINE, 2016, 166 : 258 - 265
  • [9] Word-order and causal inference: The temporal attribution bias
    Bettinsoli, Maria Laura
    Maass, Anne
    Kashima, Yoshihisa
    Suitner, Caterina
    [J]. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY, 2015, 60 : 144 - 149
  • [10] Survival Bias in Mendelian Randomization Studies A Threat to Causal Inference
    Smit, Roelof A. J.
    Trompet, Stella
    Dekkers, Olaf M.
    Jukema, J. Wouter
    le Cessie, Saskia
    [J]. EPIDEMIOLOGY, 2019, 30 (06) : 813 - 816