Cooperatively assembled liquid crystals enable temperature-controlled Forster resonance energy transfer

被引:16
|
作者
Yu, Zhen-Qiang [1 ]
Li, Xiaodong [1 ]
Wan, Wei [2 ]
Li, Xin-Shun [1 ]
Fu, Kuo [1 ]
Wu, Yue [1 ]
Li, Alexander D. Q. [2 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518073, Peoples R China
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
基金
中国国家自然科学基金;
关键词
LUMINESCENT;
D O I
10.1039/d0sc06838a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Balancing the rigidity of a pi-conjugated structure for strong emission and the flexibility of liquid crystals for self-assembly is the key to realizing highly emissive liquid crystals (HELCs). Here we show that (1) integrating organization-induced emission into dual molecular cooperatively-assembled liquid crystals, (2) amplifying mesogens, and (3) elongating the spacer linking the emitter and the mesogen create advanced materials with desired thermal-optical properties. Impressively, assembling the fluorescent acceptor Nile red into its host donor designed according to the aforementioned strategies results in a temperature-controlled Forster resonance energy transfer (FRET) system. Indeed, FRET exhibits strong S-curve dependence as temperature sweeps through the liquid crystal phase transformation. Such thermochromic materials, suitable for dynamic thermo-optical sensing and modulation, are anticipated to unlock new and smart approaches for controlling and directing light in stimuli-responsive devices.
引用
收藏
页码:3146 / 3151
页数:7
相关论文
共 50 条
  • [41] Forster resonance energy transfer analysis of amyloid state of proteins
    Trusova, Valeriya
    Tarabara, Uliana
    Zhytniakivska, Olga
    Vus, Kateryna
    Gorbenko, Galyna
    BBA ADVANCES, 2022, 2
  • [42] Quantification and Imaging of Nanoscale Contact with Forster Resonance Energy Transfer
    Simoes, Monica G.
    Urstoeger, Georg
    Schennach, Robert
    Hirn, Ulrich
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (16) : 19521 - 19529
  • [43] Improving energy efficiency of passive temperature-controlled transports
    Haasis, Hans-Dietrich
    Barz, Andreas
    Kille, Guido
    Schwarz, Lydia
    Wunsch, Axel
    Wildebrand, Hendrik
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IEEE-IESM 2013), 2013, : 183 - 188
  • [44] Can nanophotonics control the Forster resonance energy transfer efficiency?
    Blum, C.
    Zijlstra, N.
    Lagendijk, A.
    Wubs, M.
    Mosk, A. P.
    Subramaniam, V.
    Vos, W. L.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [45] SENSOR BASED ON FORSTER RESONANCE ENERGY TRANSFER WITH QUANTUM DOT
    Liskova, Marcela
    Datinska, Vladimira
    Kleparnik, Karel
    Foret, Frantisek
    CECE 2012: 9TH INTERNATIONAL INTERDISCIPLINARY MEETING ON BIOANALYSIS, 2012, : 303 - 306
  • [46] Beyond Forster Resonance Energy Transfer in Linear Nanoscale Systems
    Barford, William
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (43): : 11842 - 11843
  • [47] Paths to Forster's resonance energy transfer (FRET) theory
    Masters, B. R.
    EUROPEAN PHYSICAL JOURNAL H, 2014, 39 (01): : 87 - 139
  • [48] Forster resonance energy transfer calibration of κ2 for Venus and Cerulean
    Meng, Fanjie
    Sachs, Frederick
    BIOPHYSICAL JOURNAL, 2007, : 376A - 376A
  • [49] Forster resonance energy transfer on single molecules: biological applications
    Margeat, Emmanuel
    ACTUALITE CHIMIQUE, 2010, (347): : 30 - 40
  • [50] Large enhancement of Forster resonance energy transfer on graphene platforms
    Biehs, S. -A.
    Agarwal, G. S.
    APPLIED PHYSICS LETTERS, 2013, 103 (24)