Cooperatively assembled liquid crystals enable temperature-controlled Forster resonance energy transfer

被引:16
|
作者
Yu, Zhen-Qiang [1 ]
Li, Xiaodong [1 ]
Wan, Wei [2 ]
Li, Xin-Shun [1 ]
Fu, Kuo [1 ]
Wu, Yue [1 ]
Li, Alexander D. Q. [2 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518073, Peoples R China
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
基金
中国国家自然科学基金;
关键词
LUMINESCENT;
D O I
10.1039/d0sc06838a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Balancing the rigidity of a pi-conjugated structure for strong emission and the flexibility of liquid crystals for self-assembly is the key to realizing highly emissive liquid crystals (HELCs). Here we show that (1) integrating organization-induced emission into dual molecular cooperatively-assembled liquid crystals, (2) amplifying mesogens, and (3) elongating the spacer linking the emitter and the mesogen create advanced materials with desired thermal-optical properties. Impressively, assembling the fluorescent acceptor Nile red into its host donor designed according to the aforementioned strategies results in a temperature-controlled Forster resonance energy transfer (FRET) system. Indeed, FRET exhibits strong S-curve dependence as temperature sweeps through the liquid crystal phase transformation. Such thermochromic materials, suitable for dynamic thermo-optical sensing and modulation, are anticipated to unlock new and smart approaches for controlling and directing light in stimuli-responsive devices.
引用
收藏
页码:3146 / 3151
页数:7
相关论文
共 50 条
  • [21] Forster Resonance Energy Transfer inside Hyperbolic Metamaterials
    Roth, Diane J.
    Nasir, Mazhar E.
    Ginzburg, Pavel
    Wang, Pan
    Le Marois, Alix
    Suhling, Klaus
    Richards, David
    Zayats, Anatoly V.
    ACS PHOTONICS, 2018, 5 (11): : 4594 - 4603
  • [22] Quantum dots for Forster Resonance Energy Transfer FRET
    Dos Santos, Marcelina Cardoso
    Algar, W. Russ
    Medintz, Igor L.
    Hildebrandt, Niko
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 125
  • [23] Ultramarine, a Chromoprotein Acceptor for Forster Resonance Energy Transfer
    Pettikiriarachchi, Anne
    Gong, Lan
    Perugini, Matthew A.
    Devenish, Rodney J.
    Prescott, Mark
    PLOS ONE, 2012, 7 (07):
  • [24] Visualizing ribosomal movements with Forster resonance energy transfer
    Majumdar, ZK
    Clegg, RM
    Noller, HF
    Hickerson, R
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 317A - 317A
  • [25] Nanophotonic Control of the Forster Resonance Energy Transfer Efficiency
    Blum, Christian
    Zijlstra, Niels
    Lagendijk, Ad
    Wubs, Martijn
    Mosk, Allard P.
    Subramaniam, Vinod
    Vos, Willem L.
    PHYSICAL REVIEW LETTERS, 2012, 109 (20)
  • [26] Forster Resonance Energy Transfer in an Intrinsically Disordered Peptide
    Martinez, Roman J.
    Martin, Joshua P.
    FASEB JOURNAL, 2022, 36
  • [27] Forster Resonance Energy Transfer in Luminescent Solar Concentrators
    Zhang, Bolong
    Lyu, Guanpeng
    Kelly, Elaine A.
    Evans, Rachel C.
    ADVANCED SCIENCE, 2022, 9 (23)
  • [28] Photonic effects on the Forster resonance energy transfer efficiency
    Rabouw, Freddy T.
    den Hartog, Stephan A.
    Senden, Tim
    Meijerink, Andries
    NATURE COMMUNICATIONS, 2014, 5
  • [29] Ferromagnetic resonance in nanostructures with temperature-controlled interlayer interaction
    Polishchuk, D. M.
    Tykhonenko-Polishchuk, Yu. O.
    Kravets, A. F.
    Tovstolytkin, A. I.
    Dzhezherya, Yu. I.
    Pogorily, A. M.
    Korenivski, V.
    LOW TEMPERATURE PHYSICS, 2016, 42 (09) : 761 - 767
  • [30] Competition between Forster Resonance Energy Transfer and Electron Transfer in Stoichiometrically Assembled Semiconductor Quantum Dot-Fullerene Conjugates
    Stewart, Michael H.
    Huston, Alan L.
    Scott, Amy M.
    Oh, Eunkeu
    Algar, W. Russ
    Deschamps, Jeffrey R.
    Susumu, Kimihiro
    Jain, Vaibhav
    Prasuhn, Duane E.
    Blanco-Canosa, Juan
    Dawson, Philip E.
    Medintz, Igor L.
    ACS NANO, 2013, 7 (10) : 9489 - 9505