Cooperatively assembled liquid crystals enable temperature-controlled Forster resonance energy transfer

被引:16
|
作者
Yu, Zhen-Qiang [1 ]
Li, Xiaodong [1 ]
Wan, Wei [2 ]
Li, Xin-Shun [1 ]
Fu, Kuo [1 ]
Wu, Yue [1 ]
Li, Alexander D. Q. [2 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518073, Peoples R China
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
基金
中国国家自然科学基金;
关键词
LUMINESCENT;
D O I
10.1039/d0sc06838a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Balancing the rigidity of a pi-conjugated structure for strong emission and the flexibility of liquid crystals for self-assembly is the key to realizing highly emissive liquid crystals (HELCs). Here we show that (1) integrating organization-induced emission into dual molecular cooperatively-assembled liquid crystals, (2) amplifying mesogens, and (3) elongating the spacer linking the emitter and the mesogen create advanced materials with desired thermal-optical properties. Impressively, assembling the fluorescent acceptor Nile red into its host donor designed according to the aforementioned strategies results in a temperature-controlled Forster resonance energy transfer (FRET) system. Indeed, FRET exhibits strong S-curve dependence as temperature sweeps through the liquid crystal phase transformation. Such thermochromic materials, suitable for dynamic thermo-optical sensing and modulation, are anticipated to unlock new and smart approaches for controlling and directing light in stimuli-responsive devices.
引用
收藏
页码:3146 / 3151
页数:7
相关论文
共 50 条
  • [31] Effects of excluded volume and correlated molecular orientations on Forster resonance energy transfer in liquid water
    Yang, Mino
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (14):
  • [32] Ultrastrong Red Circularly Polarized Luminescence Promoted from Chiral Transfer and Intermolecular Forster Resonance Energy Transfer in Ternary Chiral Emissive Nematic Liquid Crystals
    Yao, Kun
    Shen, Yihao
    Li, Yang
    Li, Xiaojing
    Quan, Yiwu
    Cheng, Yixiang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (01): : 598 - 603
  • [33] Temperature-dependent Forster resonance energy transfer from upconversion nanoparticles to quantum dots
    Zhang, Weina
    Li, Juan
    Lei, Hongxiang
    Li, Baojun
    OPTICS EXPRESS, 2020, 28 (08): : 12450 - 12459
  • [34] Temperature-controlled Friction Coefficient Lubricated by Liquid Crystal
    Gao, Yuan
    Ma, Liran
    Luo, Jianbin
    LIQUID CRYSTALS, 2022, 49 (01) : 66 - 71
  • [35] Self-alignment method on a temperature-controlled transfer
    Iwase E.
    Onoe H.
    Nakai A.
    Matsumoto K.
    Shimoyama I.
    IEEJ Transactions on Sensors and Micromachines, 2010, 130 (05) : 188 - 193+7
  • [36] Temperature-controlled liquid crystalline polymorphism of gold nanoparticles
    Wojcik, Michal M.
    Gora, Monika
    Mieczkowski, Jozef
    Romiszewski, Jerzy
    Gorecka, Ewa
    Pociecha, Damian
    SOFT MATTER, 2011, 7 (22) : 10561 - 10564
  • [37] Temperature-Controlled Liquid-Liquid Phase Separation of Disordered Proteins
    Dignon, Gregory L.
    Zheng, Wenwei
    Kim, Young C.
    Mittal, Jeetain
    ACS CENTRAL SCIENCE, 2019, 5 (05) : 821 - 830
  • [38] Broad-band microwave characterization of liquid crystals using a temperature-controlled, coaxial transmission line
    Mueller, S
    Penirschke, A
    Damm, C
    Scheele, P
    Wittek, M
    Weil, C
    Jakoby, R
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (06) : 1937 - 1945
  • [39] Studying α-Synuclein Misfolding through Forster Resonance Energy Transfer
    Haney, Conor M.
    Wissner, Rebecca F.
    Petersson, E. James
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 64A - 64A
  • [40] Forster Resonance Energy Transfer as a Probe of Membrane Protein Folding
    Kang, Guipeun
    Gary, Cyril
    Oklejas, Vanessa
    Cao, Weihan
    Kim, Judy
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 402A - 403A