Cooperatively assembled liquid crystals enable temperature-controlled Forster resonance energy transfer

被引:16
|
作者
Yu, Zhen-Qiang [1 ]
Li, Xiaodong [1 ]
Wan, Wei [2 ]
Li, Xin-Shun [1 ]
Fu, Kuo [1 ]
Wu, Yue [1 ]
Li, Alexander D. Q. [2 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518073, Peoples R China
[2] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
基金
中国国家自然科学基金;
关键词
LUMINESCENT;
D O I
10.1039/d0sc06838a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Balancing the rigidity of a pi-conjugated structure for strong emission and the flexibility of liquid crystals for self-assembly is the key to realizing highly emissive liquid crystals (HELCs). Here we show that (1) integrating organization-induced emission into dual molecular cooperatively-assembled liquid crystals, (2) amplifying mesogens, and (3) elongating the spacer linking the emitter and the mesogen create advanced materials with desired thermal-optical properties. Impressively, assembling the fluorescent acceptor Nile red into its host donor designed according to the aforementioned strategies results in a temperature-controlled Forster resonance energy transfer (FRET) system. Indeed, FRET exhibits strong S-curve dependence as temperature sweeps through the liquid crystal phase transformation. Such thermochromic materials, suitable for dynamic thermo-optical sensing and modulation, are anticipated to unlock new and smart approaches for controlling and directing light in stimuli-responsive devices.
引用
收藏
页码:3146 / 3151
页数:7
相关论文
共 50 条
  • [1] Plasmon-Controlled Forster Resonance Energy Transfer
    Zhao, Lei
    Ming, Tian
    Shao, Lei
    Chen, Huanjun
    Wang, Jianfang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14): : 8287 - 8296
  • [2] Characterization of Liquid Crystals Using a Temperature-Controlled 60 GHz Resonator
    Polat, E.
    Reese, R.
    Tesmer, H.
    Schmidt, S.
    Spaeth, M.
    Nickel, M.
    Schuster, C.
    Jakoby, R.
    Maune, H.
    2019 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP 2019), 2019, : 19 - 21
  • [3] Multichromophoric Forster resonance energy transfer
    Jang, SJ
    Newton, MD
    Silbey, RJ
    PHYSICAL REVIEW LETTERS, 2004, 92 (21) : 218301 - 1
  • [4] From Forster resonance energy transfer to coherent resonance energy transfer and back
    Clegg, Robert M.
    Sener, Melih
    Govindjee
    OPTICAL BIOPSY VII, 2010, 7561
  • [5] Temperature responsive nanoparticles: poloxamers as a modulator of Forster resonance energy transfer (FRET)
    Klep, Oleksandr
    Bandera, Yuriy
    Foulger, Stephen H.
    NANOSCALE, 2018, 10 (19) : 9401 - 9409
  • [6] Distance and Temperature Dependency in Nonoverlapping and Conventional Forster Resonance Energy-Transfer
    Vuojola, Johanna
    Hyppanen, Iko
    Nummela, Marika
    Kankare, Jouko
    Soukka, Tero
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (46): : 13685 - 13694
  • [7] Forster resonance energy transfer photoacoustic microscopy
    Wang, Yu
    Wang, Lihong V.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2013, 2013, 8581
  • [8] Concentric Forster Resonance Energy Transfer Imaging
    Wu, Miao
    Algar, W. Russ
    ANALYTICAL CHEMISTRY, 2015, 87 (16) : 8078 - 8083
  • [9] Forster resonance energy transfer in absorbing environment
    Petrosyan, L. S.
    Noginov, M. N.
    Shahbazyan, T., V
    METAMATERIALS, METADEVICES, AND METASYSTEMS 2024, 2024, 13109
  • [10] Forster resonance energy transfer in membrane rafts
    Acasandrei, M
    Dale, RE
    vandeVen, M
    Steels, P
    Ameloot, M
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 373A - 373A