A q-difference version of the ε-algorithm

被引:11
|
作者
He, Yi [1 ,2 ]
Hu, Xing-Biao [1 ]
Tam, Hon-Wah [3 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, AMSS, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
[3] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
LOTKA-VOLTERRA SYSTEM; CONVERGENCE ACCELERATION ALGORITHMS; TODA LATTICE; EQUATION;
D O I
10.1088/1751-8113/42/9/095202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a q-difference version of the epsilon-algorithm is proposed. By using determinant identities the solutions of an initial value problem thus arisen can be expressed as ratios of Hankel determinants. It is shown that in numerical analysis this algorithm can be used to compute the approximation lim(t ->infinity) f (t), and in the field of integrable systems it could be viewed as the q-difference version of the modified Toda molecule equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] POSITIVE SOLUTIONS OF q-DIFFERENCE EQUATION
    El-Shahed, Moustafa
    Hassan, H. A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (05) : 1733 - 1738
  • [32] q-difference operators for orthogonal polynomials
    Ismail, Mourad E. H.
    Simeonov, Plamen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) : 749 - 761
  • [33] QUANTUM SYMMETRIES OF Q-DIFFERENCE EQUATIONS
    FLOREANINI, R
    VINET, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (06) : 3134 - 3156
  • [34] Oscillation of a family of q-difference equations
    Baoguo, Jia
    Erbe, Lynn
    Peterson, Allan
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 871 - 875
  • [35] On the Riemann–Hilbert problem for difference and q-difference systems
    I. V. Vyugin
    R. I. Levin
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 297 - 313
  • [36] PROPERTIES ON q-DIFFERENCE RICCATI EQUATION
    Huang, Zhi-Bo
    Zhang, Ran-Ran
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (06) : 1755 - 1771
  • [37] UNIFICATION OF INTEGRABLE q-DIFFERENCE EQUATIONS
    Silindir, Burcu
    Soyoglu, Duygu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [38] On some ultrametric q-difference equations
    Boudjerida, Nadjet
    Boutabaa, Abdelbaki
    Medjerab, Samia
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02): : 177 - 188
  • [39] Applications of a generalized q-difference equation
    Fang, Jian-Ping
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [40] Euler characteristics and q-difference equations
    Roques, Julien
    Sauloy, Jacques
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (01) : 129 - 154