A q-difference version of the ε-algorithm

被引:11
|
作者
He, Yi [1 ,2 ]
Hu, Xing-Biao [1 ]
Tam, Hon-Wah [3 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, AMSS, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
[3] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
LOTKA-VOLTERRA SYSTEM; CONVERGENCE ACCELERATION ALGORITHMS; TODA LATTICE; EQUATION;
D O I
10.1088/1751-8113/42/9/095202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a q-difference version of the epsilon-algorithm is proposed. By using determinant identities the solutions of an initial value problem thus arisen can be expressed as ratios of Hankel determinants. It is shown that in numerical analysis this algorithm can be used to compute the approximation lim(t ->infinity) f (t), and in the field of integrable systems it could be viewed as the q-difference version of the modified Toda molecule equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] On classical irregular q-difference equations
    Roques, Julien
    COMPOSITIO MATHEMATICA, 2012, 148 (05) : 1624 - 1644
  • [42] Spectral analysis of a q-difference operator
    Bekker, Miron B.
    Bohner, Martin J.
    Herega, Alexander N.
    Voulov, Hristo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (14)
  • [43] Applications of a generalized q-difference equation
    Jian-Ping Fang
    Advances in Difference Equations, 2014
  • [44] Automorphisms of the Algebra of q-Difference Operators
    Kaiming Zhao
    Acta Mathematica Sinica(English Series), 1999, 15 (02) : 145 - 152
  • [45] Automorphisms of the algebra of q-difference operators
    Zhao, KM
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (02): : 145 - 152
  • [46] Some results on q-difference equations
    Junchao Zhang
    Gang Wang
    Junjie Chen
    Rongxiang Zhao
    Advances in Difference Equations, 2012
  • [47] Multiplicity estimates for q-difference operators
    Bertrand, Daniel
    DIOPHANTINE GEOMETRY, PROCEEDINGS, 2007, 4 : 65 - 71
  • [48] On the linear ordinary q-difference equation
    Adams, CR
    ANNALS OF MATHEMATICS, 1928, 30 : 195 - 205
  • [49] Remarks on a generalized q-difference equation
    Fang, Jian-Ping
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (10) : 934 - 953
  • [50] Another homogeneous q-difference operator
    Saad, Husam L.
    Sukhi, Abbas A.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) : 4332 - 4339