On some ultrametric q-difference equations

被引:2
|
作者
Boudjerida, Nadjet [1 ]
Boutabaa, Abdelbaki [2 ]
Medjerab, Samia
机构
[1] Univ Jijel, Lab Math LMPA, Jijel, Algeria
[2] Univ Blaise Pascal Clermont Ferrand, Lab Math UMR 6620, F-63177 Aubiere, France
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2013年 / 137卷 / 02期
关键词
q-Difference equation; Ultrametric Nevanlinna theory;
D O I
10.1016/j.bulsci.2010.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a complete ultrametric algebraically closed field and let M(K) be the field of meromorphic functions in all K. Let B (X), A(0)(X),..., A(s) (X) (s >= 1) be elements of K (X) such that A(0)(X)A(s)(X) not equal 0. This paper is aimed to study functions f is an element of M(K) which are solutions of the functional equation: Sigma(s)(i=0) A(i)(x)(sigma(i)(q)f)(x) = B(x), where q is an element of K, 0 < vertical bar q vertical bar < 1 and (sigma(q) f)(x) = f (qx). First we show that, if A(0)(X),..., A(s) (X), B(X) are constant, then f is a rational function. Next, we examine solutions of the above equation in the general case and give some characterizations of the order of growth of these solutions. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [1] Ultrametric q-difference equations and q-Wronskian
    Belaidi, Benharrat
    Bouabdelli, Rabab
    Boutabaa, Abdelbaki
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (02): : 137 - 145
  • [2] q-difference equations in ultrametric fields.
    Boudjrida, Najet
    Boutabaa, Abdelbaki
    Medjerab, Samia
    ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2011, 551 : 39 - 49
  • [3] On the Growth Order of Meromorphic Solutions of Some Ultrametric q-Difference Equations
    Boughaba, Houda
    Zerzaihi, Tahar
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (04) : 1280 - 1288
  • [4] Some results on q-difference equations
    Junchao Zhang
    Gang Wang
    Junjie Chen
    Rongxiang Zhao
    Advances in Difference Equations, 2012
  • [5] Some results on q-difference equations
    Zhang, Junchao
    Wang, Gang
    Chen, Junjie
    Zhao, Rongxiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [6] MEROMORPHIC SOLUTIONS OF SOME q-DIFFERENCE EQUATIONS
    Chen, BaoQin
    Chen, ZongXuan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1303 - 1314
  • [7] Properties on Solutions of Some q-Difference Equations
    Chen, Bao Qin
    Chen, Zong Xuan
    Li, Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (10) : 1877 - 1886
  • [8] Properties on solutions of some q-difference equations
    Bao Qin Chen
    Zong Xuan Chen
    Sheng Li
    Acta Mathematica Sinica, English Series, 2010, 26 : 1877 - 1886
  • [9] An ultrametric version of the Maillet-Malgrange theorem for nonlinear q-difference equations
    Di Vizio, Lucia
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) : 2803 - 2814
  • [10] Properties on Solutions of Some q-Difference Equations
    Bao Qin CHEN Zong Xuan CHEN~(1)) Sheng LI School of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2010, 26 (10) : 1877 - 1886