uniqueness;
q-shift;
q-difference equations;
entire functions;
zero order;
Nevanlinna theory;
D O I:
10.1186/1687-1847-2012-191
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider the q-difference analogue of the Clunie theorem. We obtain there is no zero-order entire solution of f(n)(z) + (del(q)f(z))(n) = 1 when n >= 2; there is no zero-order transcendental entire solution of f(n)(z) + P(z)(del(q)f(z))(m) = Q(z) when n > m >= 0; and the equation f(n) + P(z)del(q)f(z) = h(z) has at most one zero-order transcendental entire solution f if f is not the solution of del(q)f(z) = 0, when n >= 4.
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Chen, BaoQin
Chen, ZongXuan
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Chen, Bao Qin
Chen, Zong Xuan
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Chen, Zong Xuan
Li, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China