Some results on q-difference equations

被引:1
|
作者
Zhang, Junchao [1 ]
Wang, Gang [2 ]
Chen, Junjie [1 ]
Zhao, Rongxiang [3 ]
机构
[1] Taiyuan Univ Technol, Coll Comp Sci & Technol, Taiyuan 030024, Peoples R China
[2] Shandong Transport Vocat Coll, Weifang 261206, Shandong, Peoples R China
[3] Shanxi Taiyuan Tideflow Elect Technol Co Ltd, Taiyuan 030024, Taiwan
关键词
uniqueness; q-shift; q-difference equations; entire functions; zero order; Nevanlinna theory;
D O I
10.1186/1687-1847-2012-191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the q-difference analogue of the Clunie theorem. We obtain there is no zero-order entire solution of f(n)(z) + (del(q)f(z))(n) = 1 when n >= 2; there is no zero-order transcendental entire solution of f(n)(z) + P(z)(del(q)f(z))(m) = Q(z) when n > m >= 0; and the equation f(n) + P(z)del(q)f(z) = h(z) has at most one zero-order transcendental entire solution f if f is not the solution of del(q)f(z) = 0, when n >= 4.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Some results on q-difference equations
    Junchao Zhang
    Gang Wang
    Junjie Chen
    Rongxiang Zhao
    Advances in Difference Equations, 2012
  • [2] SOME RESULTS ON MEROMORPHIC SOLUTIONS OF Q-DIFFERENCE DIFFERENTIAL EQUATIONS
    Gao, Lingyun
    Gao, Zhenguang
    Liu, Manli
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (03) : 593 - 610
  • [3] Some results for complex partial q-difference equations in Cn
    Wang, Yue
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 471 - 481
  • [4] On some ultrametric q-difference equations
    Boudjerida, Nadjet
    Boutabaa, Abdelbaki
    Medjerab, Samia
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02): : 177 - 188
  • [5] MEROMORPHIC SOLUTIONS OF SOME q-DIFFERENCE EQUATIONS
    Chen, BaoQin
    Chen, ZongXuan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1303 - 1314
  • [6] Properties on Solutions of Some q-Difference Equations
    Chen, Bao Qin
    Chen, Zong Xuan
    Li, Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (10) : 1877 - 1886
  • [7] Properties on solutions of some q-difference equations
    Bao Qin Chen
    Zong Xuan Chen
    Sheng Li
    Acta Mathematica Sinica, English Series, 2010, 26 : 1877 - 1886
  • [8] Properties on Solutions of Some q-Difference Equations
    Bao Qin CHEN Zong Xuan CHEN~(1)) Sheng LI School of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2010, 26 (10) : 1877 - 1886
  • [9] Some Properties of Solutions for Some Types of Q-Difference Equations Originated from Q-Difference Painlevé Equation
    Hongyan XU
    Xiumin ZHENG
    JournalofMathematicalResearchwithApplications, 2020, 40 (05) : 507 - 518
  • [10] q-Difference Equations
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 41 - 71