Genetic Algorithm-based Test Parameter Optimization for ADAS System Testing

被引:36
|
作者
Kluck, Florian [1 ]
Zimmermann, Martin [1 ]
Wotawa, Franz [1 ]
Nica, Mihai [2 ]
机构
[1] Graz Univ Technol, Inst Software Technol, Christian Doppler Lab Qual Assurance, Methodol Autonomous Cyber Phys Syst, Graz, Austria
[2] AVL List GmbH, Graz, Austria
关键词
Autonomous vehicles; Genetic algorithms; System verification; Automatic testing;
D O I
10.1109/QRS.2019.00058
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we outline the use of a genetic algorithm for test parameter optimization in the context of autonomous and automated driving. Our approach iteratively optimizes test parameters to aim at obtaining critical scenarios that form the basis for virtual verification and validation of Advanced Driver Assistant Systems (ADAS). We consider a test scenario to be critical if the underlying parameter set causes a malfunction of the system equipped with the ADAS function (i.e., near crash or crash of the vehicle). For evaluating the effectiveness of our approach, we set up an automated simulation framework, where we simulated the Euro NCAP car-to-car rear scenario. To assess the criticality of each test scenario we rely on time-to-collision (TTC), which is a well-known and often used time-based safety indicator for recognizing rear-end conflicts. Our genetic algorithm approach showed a higher chance to generate a critical scenario, compared to a random selection of test parameters.
引用
收藏
页码:418 / 425
页数:8
相关论文
共 50 条
  • [1] Teaching Genetic Algorithm-based Parameter Optimization Using Pacman
    Silla, Carlos N., Jr.
    2016 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE), 2016,
  • [2] Genetic algorithm-based optimization of a vehicle suspension system
    Esat, I
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 1999, 21 (2-3) : 148 - 160
  • [3] Parameter optimization of EPS system based on genetic algorithm
    Zhao, Wan-Zhong
    Shi, Guo-Biao
    Lin, Yi
    Shi, Pei-Ji
    Li, Qiang
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2009, 39 (02): : 286 - 290
  • [4] A Genetic Algorithm-based System for Automatic Control of Test Data Generation
    Pocatilu, Paul
    Ivan, Ion
    STUDIES IN INFORMATICS AND CONTROL, 2013, 22 (02): : 219 - 226
  • [5] Genetic algorithm-based parameters optimization of thermal process control system
    Liu, CL
    Zhen, CG
    Zhai, YJ
    Zhou, LH
    SYSTEM SIMULATION AND SCIENTIFIC COMPUTING (SHANGHAI), VOLS I AND II, 2002, : 219 - 222
  • [6] Land cover classification using random forest with genetic algorithm-based parameter optimization
    Ming, Dongping
    Zhou, Tianning
    Wang, Min
    Tan, Tian
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [7] Genetic algorithm-based optimization of pulse sequences
    Somai, Vencel
    Kreis, Felix
    Gaunt, Adam
    Tsyben, Anastasia
    Chia, Ming Li
    Hesse, Friederike
    Wright, Alan J.
    Brindle, Kevin M.
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (05) : 2130 - 2144
  • [8] Genetic algorithm-based optimization of hydrophobicity tables
    Zviling, M
    Leonov, H
    Arkin, IT
    BIOINFORMATICS, 2005, 21 (11) : 2651 - 2656
  • [9] Genetic algorithm-based optimization of advanced materials
    Bejan, L.
    Sirbu, A.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2008, 2 (12): : 846 - 850
  • [10] Integrated Pairwise Testing based Genetic Algorithm for Test Optimization
    Swathi, Baswaraju
    Tiwari, Harshvardhan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (04) : 144 - 150