Discriminative Joint Non-negative Matrix Factorization for Human Action Classification

被引:0
|
作者
Eweiwi, Abdalrahman [1 ]
Cheema, Muhammad Shahzad [1 ]
Bauckhage, Christian [1 ]
机构
[1] Univ Bonn, Bonn Aachen Int Ctr IT, Bonn, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a supervised classification approach based on non-negative matrix factorization (NMF). Our classification framework builds on the recent expansions of non-negative matrix factorization to multiview learning, where the primary dataset benefits from auxiliary information for obtaining shared and meaningful spaces. For discrimination, we utilize data categories in a supervised manner as an auxiliary source of information in order to learn co-occurrences through a common set of basis vectors. We demonstrate the efficiency of our algorithm in integrating various image modalities for enhancing the overall classification accuracy over different benchmark datasets. Our evaluation considers two challenging image datasets of human action recognition. We show that our algorithm achieves superior results over state-of-the-art in terms of efficiency and overall classification accuracy.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [21] MEL-GENERALIZED CEPSTRAL REGULARIZATION FOR DISCRIMINATIVE NON-NEGATIVE MATRIX FACTORIZATION
    Li, Li
    Kameoka, Hirokazu
    Makino, Shoji
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [22] DISCRIMINATIVE NON-NEGATIVE MATRIX FACTORIZATION FOR SINGLE-CHANNEL SPEECH SEPARATION
    Wang, Zi
    Sha, Fei
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [23] Dropout non-negative matrix factorization
    Zhicheng He
    Jie Liu
    Caihua Liu
    Yuan Wang
    Airu Yin
    Yalou Huang
    Knowledge and Information Systems, 2019, 60 : 781 - 806
  • [24] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [25] INFINITE NON-NEGATIVE MATRIX FACTORIZATION
    Schmidt, Mikkel N.
    Morup, Morten
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 905 - 909
  • [26] Collaborative Non-negative Matrix Factorization
    Benlamine, Kaoutar
    Grozavu, Nistor
    Bennani, Younes
    Matei, Basarab
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 655 - 666
  • [27] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187
  • [28] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092
  • [29] Algorithms for non-negative matrix factorization
    Lee, DD
    Seung, HS
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 556 - 562
  • [30] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511