Dropout non-negative matrix factorization

被引:0
|
作者
Zhicheng He
Jie Liu
Caihua Liu
Yuan Wang
Airu Yin
Yalou Huang
机构
[1] Nankai University,College of Artificial Intelligence
[2] Civil Aviation University of China,College of Computer Science and Technology
[3] Tianjin University of Science and Technology,College of Computer Science and Information Engineering
[4] Nankai University,College of Computer Science
[5] Nankai University,College of Software
来源
关键词
Non-negative matrix factorization; Dropout; Dropout strategies; Dropout NMF; Independent feature learning;
D O I
暂无
中图分类号
学科分类号
摘要
Non-negative matrix factorization (NMF) has received lots of attention in research communities like document clustering, image analysis, and collaborative filtering. However, NMF-based approaches often suffer from overfitting and interdependent features which are caused by latent feature co-adaptation during the learning process. Most of the existing improved methods of NMF take advantage of side information or task-specific knowledge. However, they are not always available. Dropout has been widely recognized as a powerful strategy for preventing co-adaptation in deep neural network training. What is more, it requires no prior knowledge and brings no additional terms or transformations into the original loss function. In this paper, we introduce the dropout strategy into NMF and propose a dropout NMF algorithm. Specifically, we first design a simple dropout strategy that fuses a dropout mask in the NMF framework to prevent feature co-adaptation. Then a sequential dropout strategy is further proposed to reduce randomness and to achieve robustness. Experimental results on multiple datasets confirm that our dropout NMF methods can not only improve NMF but also further improve existing representative matrix factorization models.
引用
收藏
页码:781 / 806
页数:25
相关论文
共 50 条
  • [1] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [2] Dropout Non-negative Matrix Factorization for Independent Feature Learning
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    [J]. NATURAL LANGUAGE UNDERSTANDING AND INTELLIGENT APPLICATIONS (NLPCC 2016), 2016, 10102 : 201 - 212
  • [3] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    [J]. PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [4] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    [J]. 2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187
  • [5] Algorithms for non-negative matrix factorization
    Lee, DD
    Seung, HS
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 556 - 562
  • [6] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    [J]. COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092
  • [7] Collaborative Non-negative Matrix Factorization
    Benlamine, Kaoutar
    Grozavu, Nistor
    Bennani, Younes
    Matei, Basarab
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 655 - 666
  • [8] INFINITE NON-NEGATIVE MATRIX FACTORIZATION
    Schmidt, Mikkel N.
    Morup, Morten
    [J]. 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 905 - 909
  • [9] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    [J]. PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [10] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511