Discriminative Joint Non-negative Matrix Factorization for Human Action Classification

被引:0
|
作者
Eweiwi, Abdalrahman [1 ]
Cheema, Muhammad Shahzad [1 ]
Bauckhage, Christian [1 ]
机构
[1] Univ Bonn, Bonn Aachen Int Ctr IT, Bonn, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a supervised classification approach based on non-negative matrix factorization (NMF). Our classification framework builds on the recent expansions of non-negative matrix factorization to multiview learning, where the primary dataset benefits from auxiliary information for obtaining shared and meaningful spaces. For discrimination, we utilize data categories in a supervised manner as an auxiliary source of information in order to learn co-occurrences through a common set of basis vectors. We demonstrate the efficiency of our algorithm in integrating various image modalities for enhancing the overall classification accuracy over different benchmark datasets. Our evaluation considers two challenging image datasets of human action recognition. We show that our algorithm achieves superior results over state-of-the-art in terms of efficiency and overall classification accuracy.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [31] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [32] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [33] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [34] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [35] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +
  • [36] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [37] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +
  • [38] Bayesian Non-negative Matrix Factorization
    Schmidt, Mikkel N.
    Winther, Ole
    Hansen, Lars Kai
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 540 - +
  • [39] Joint Non-negative Matrix Factorization for Learning Ideological Leaning on Twitter
    Lahoti, Preethi
    Garimella, Kiran
    Gionis, Aristides
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 351 - 359
  • [40] Classification of landsat TM image based on non-negative matrix factorization
    Ren, Jiamian
    Yu, Xianchuan
    Hao, Bixin
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 405 - 408