Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers

被引:3
|
作者
Jung, Young Hee [1 ,2 ,3 ]
Lee, Hyejoo [2 ,3 ,4 ]
Kim, Hee Jin [2 ,3 ,4 ]
Na, Duk L. [2 ,3 ,4 ,6 ,7 ]
Han, Hyun Jeong [1 ]
Jang, Hyemin [2 ,3 ,4 ]
Seo, Sang Won [2 ,3 ,4 ,5 ]
机构
[1] Hanyang Univ, Myoungji Hosp, Dept Neurol, Coll Med, Goyang, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurol, 81 Irwon Ro, Seoul 06351, South Korea
[3] Samsung Med Ctr, Neurosci Ctr, Seoul, South Korea
[4] Samsung Med Ctr, Res Inst Future Med, Samsung Alzheimer Res Ctr, 81 Irwon Ro, Seoul 06351, South Korea
[5] Sungkyunkwan Univ, Dept Intelligent Precis Healthcare Convergence, Suwon, South Korea
[6] Sungkyunkwan Univ, Dept Hlth Sci & Technol, SAIHST, Seoul, South Korea
[7] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
SUPERFICIAL SIDEROSIS; ALZHEIMER-DISEASE; MICROBLEEDS;
D O I
10.1038/s41598-020-75664-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amyloid-beta(A beta) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to facilitate prognostic prediction and appropriate treatment decisions. In this study, we applied two interpretable machine learning algorithms, gradient boosting machine (GBM) and random forest (RF), to predict A beta PET positivity in patients with CAA MRI markers. In the GBM algorithm, the number of lobar cerebral microbleeds (CMBs), deep CMBs, lacunes, CMBs in dentate nuclei, and age were ranked as the most influential to predict A beta positivity. In the RF algorithm, the absence of diabetes was additionally chosen. Cut-off values of the above variables predictive of A beta positivity were as follows: (1) the number of lobar CMBs>16.4(GBM)/14.3(RF), (2) no deep CMBs(GBM/RF), (3) the number of lacunes>7.4(GBM/RF), (4) age>74.3(GBM)/64(RF), (5) no CMBs in dentate nucleus(GBM/RF). The classification performances based on the area under the receiver operating characteristic curve were 0.83 in GBM and 0.80 in RF. Our study demonstrates the utility of interpretable machine learning in the clinical setting by quantifying the relative importance and cutoff values of predictive variables for A beta positivity in patients with suspected CAA markers.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Low Amyloid-PET Uptake in Iowa-Type Cerebral Amyloid Angiopathy with Cerebral Venous Thrombosis
    Bermejo-Guerrero, Laura
    Sanchez-Tejerina, Daniel
    Sanchez-Tornero, Mario
    del Carmen Sanchez-Sanchez, Maria
    Gomez-Grande, Adolfo
    Villarejo-Galende, Alberto
    Octavio Herrero-San Martin, Alejandro
    Gonzalez-Sanchez, Marta
    JOURNAL OF ALZHEIMERS DISEASE, 2019, 72 (03) : 677 - 681
  • [42] Impaired dynamic cerebral autoregulation in patients with cerebral amyloid angiopathy
    Reinhard, Matthias
    Lorenz, Leonie
    Sommerlade, Linda
    Allignol, Arthur
    Urbach, Horst
    Weiller, Cornelius
    Egger, Karl
    BRAIN RESEARCH, 2019, 1717 : 60 - 65
  • [43] Non-hemorrhagic imaging markers of cerebral amyloid angiopathy in memory clinic patients
    Costa, Ana Sofia
    Albrecht, Milena
    Reich, Arno
    Nikoubashman, Omid
    Schulz, Joerg B.
    Reetz, Kathrin
    Pinho, Joao
    ALZHEIMERS & DEMENTIA, 2024, 20 (07) : 4792 - 4802
  • [44] Topography of Dilated Perivascular Spaces in Patients with Markers of Cerebral Amyloid Angiopathy and Hypertensive Vasculopathy
    Martinez-Ramirez, Sergi
    Pontes-Neto, Octavio
    Dumas, Andrew P.
    Auriel, Eitan
    Gurol, Mahmut Edip
    Greenberg, Steven M.
    Viswanathan, Anand
    STROKE, 2013, 44 (02)
  • [45] Cognitive and psychological assessment in patients with cerebral amyloid angiopathy
    Leonardi, Matilde
    Camarda, Giorgia
    Mazzucchelli, Alessia
    Schiavolin, Silvia
    Sismondo, Pietro
    Barbadoro, Filippo
    Ippoliti, Camilla
    Cacciatore, Martina
    Marcassoli, Alessia
    Bersano, Anna
    Canavero, Isabella
    Storti, Benedetta
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2023, 455
  • [46] Retinal Vascular Abnormalities in Patients with Cerebral Amyloid Angiopathy
    Lee, Andrew
    Rudkin, Adam
    Agzarian, Marc
    Patel, Sandy
    Lake, Stewart
    Chen, Celia
    CEREBROVASCULAR DISEASES, 2009, 28 (06) : 618 - 622
  • [47] Recurrent Intracerebral Hemorrhage In Patients With Cerebral Amyloid Angiopathy
    Garg, Aayushi
    Ortega-Gutierrez, Santiago
    Farooqui, Mudassir
    Nagaraja, Nandakumar
    STROKE, 2022, 53
  • [48] High Prevalence Of Unrecognized Cerebral Amyloid Angiopathy Related Inflammation Among Patients With Cerebral Amyloid Angiopathy And White Matter Disease
    Kharal, Abbas
    Amin, Moein
    Aboseif, Albert
    Southard, Kristopher
    Hajj-Ali, Rula A.
    Uchino, Ken
    STROKE, 2023, 54
  • [49] Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy
    Linn, J.
    Halpin, A.
    Demaerel, P.
    Ruhland, J.
    Giese, A. D.
    Dichgans, M.
    van Buchem, M. A.
    Bruckmann, H.
    Greenberg, S. M.
    NEUROLOGY, 2010, 74 (17) : 1346 - 1350
  • [50] Perivascular Space Progression In Patients With Cerebral Amyloid Angiopathy
    Li, Qi
    Zotin, Maria Clara Zanon
    van Veluw, Susanne
    Perosa, Valentina
    Gurol, Edip
    Goldstein, Joshua
    Viswanathan, Anand
    Greenberg, Steven
    CEREBROVASCULAR DISEASES, 2024, 53 : 124 - 124