共 50 条
Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers
被引:3
|作者:
Jung, Young Hee
[1
,2
,3
]
Lee, Hyejoo
[2
,3
,4
]
Kim, Hee Jin
[2
,3
,4
]
Na, Duk L.
[2
,3
,4
,6
,7
]
Han, Hyun Jeong
[1
]
Jang, Hyemin
[2
,3
,4
]
Seo, Sang Won
[2
,3
,4
,5
]
机构:
[1] Hanyang Univ, Myoungji Hosp, Dept Neurol, Coll Med, Goyang, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurol, 81 Irwon Ro, Seoul 06351, South Korea
[3] Samsung Med Ctr, Neurosci Ctr, Seoul, South Korea
[4] Samsung Med Ctr, Res Inst Future Med, Samsung Alzheimer Res Ctr, 81 Irwon Ro, Seoul 06351, South Korea
[5] Sungkyunkwan Univ, Dept Intelligent Precis Healthcare Convergence, Suwon, South Korea
[6] Sungkyunkwan Univ, Dept Hlth Sci & Technol, SAIHST, Seoul, South Korea
[7] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Seoul, South Korea
基金:
新加坡国家研究基金会;
关键词:
SUPERFICIAL SIDEROSIS;
ALZHEIMER-DISEASE;
MICROBLEEDS;
D O I:
10.1038/s41598-020-75664-8
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Amyloid-beta(A beta) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to facilitate prognostic prediction and appropriate treatment decisions. In this study, we applied two interpretable machine learning algorithms, gradient boosting machine (GBM) and random forest (RF), to predict A beta PET positivity in patients with CAA MRI markers. In the GBM algorithm, the number of lobar cerebral microbleeds (CMBs), deep CMBs, lacunes, CMBs in dentate nuclei, and age were ranked as the most influential to predict A beta positivity. In the RF algorithm, the absence of diabetes was additionally chosen. Cut-off values of the above variables predictive of A beta positivity were as follows: (1) the number of lobar CMBs>16.4(GBM)/14.3(RF), (2) no deep CMBs(GBM/RF), (3) the number of lacunes>7.4(GBM/RF), (4) age>74.3(GBM)/64(RF), (5) no CMBs in dentate nucleus(GBM/RF). The classification performances based on the area under the receiver operating characteristic curve were 0.83 in GBM and 0.80 in RF. Our study demonstrates the utility of interpretable machine learning in the clinical setting by quantifying the relative importance and cutoff values of predictive variables for A beta positivity in patients with suspected CAA markers.
引用
收藏
页数:10
相关论文