Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers

被引:3
|
作者
Jung, Young Hee [1 ,2 ,3 ]
Lee, Hyejoo [2 ,3 ,4 ]
Kim, Hee Jin [2 ,3 ,4 ]
Na, Duk L. [2 ,3 ,4 ,6 ,7 ]
Han, Hyun Jeong [1 ]
Jang, Hyemin [2 ,3 ,4 ]
Seo, Sang Won [2 ,3 ,4 ,5 ]
机构
[1] Hanyang Univ, Myoungji Hosp, Dept Neurol, Coll Med, Goyang, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurol, 81 Irwon Ro, Seoul 06351, South Korea
[3] Samsung Med Ctr, Neurosci Ctr, Seoul, South Korea
[4] Samsung Med Ctr, Res Inst Future Med, Samsung Alzheimer Res Ctr, 81 Irwon Ro, Seoul 06351, South Korea
[5] Sungkyunkwan Univ, Dept Intelligent Precis Healthcare Convergence, Suwon, South Korea
[6] Sungkyunkwan Univ, Dept Hlth Sci & Technol, SAIHST, Seoul, South Korea
[7] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
SUPERFICIAL SIDEROSIS; ALZHEIMER-DISEASE; MICROBLEEDS;
D O I
10.1038/s41598-020-75664-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amyloid-beta(A beta) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to facilitate prognostic prediction and appropriate treatment decisions. In this study, we applied two interpretable machine learning algorithms, gradient boosting machine (GBM) and random forest (RF), to predict A beta PET positivity in patients with CAA MRI markers. In the GBM algorithm, the number of lobar cerebral microbleeds (CMBs), deep CMBs, lacunes, CMBs in dentate nuclei, and age were ranked as the most influential to predict A beta positivity. In the RF algorithm, the absence of diabetes was additionally chosen. Cut-off values of the above variables predictive of A beta positivity were as follows: (1) the number of lobar CMBs>16.4(GBM)/14.3(RF), (2) no deep CMBs(GBM/RF), (3) the number of lacunes>7.4(GBM/RF), (4) age>74.3(GBM)/64(RF), (5) no CMBs in dentate nucleus(GBM/RF). The classification performances based on the area under the receiver operating characteristic curve were 0.83 in GBM and 0.80 in RF. Our study demonstrates the utility of interpretable machine learning in the clinical setting by quantifying the relative importance and cutoff values of predictive variables for A beta positivity in patients with suspected CAA markers.
引用
收藏
页数:10
相关论文
共 50 条
  • [12] Amyloid-PET in cerebral amyloid angiopathy Detecting vascular amyloid deposits, not just blood
    Raposo, Nicolas
    Sonnen, Joshua A.
    NEUROLOGY, 2017, 89 (14) : 1437 - 1438
  • [13] Anticoagulation in patients with cerebral amyloid angiopathy
    Shoamanesh, Ashkan
    LANCET, 2023, 402 (10411): : 1418 - 1419
  • [14] Cerebral Amyloid Angiopathy Pathology and Its Association With Amyloid-β PET Signal
    McCarter, Stuart J.
    Lesnick, Timothy G.
    Lowe, Val
    Mielke, Michelle M.
    Constantopoulos, Eleni
    Rabinstein, Alejandro A.
    Przybelski, Scott A.
    Botha, Hugo
    Jones, David T.
    Ramanan, Vijay K.
    Jack, Clifford R.
    Petersen, Ronald C.
    Knopman, David
    Boeve, Bradley F.
    Murray, Melissa E.
    Dickson, Dennis W.
    Vemuri, Prashanthi
    Kantarci, Kejal
    Reichard, R. Ross
    Graff-Radford, Jonathan
    NEUROLOGY, 2021, 97 (18) : E1799 - E1808
  • [15] Florbetapir PET to Diagnose Cerebral Amyloid Angiopathy.
    Gurol, M. Edip
    Becker, J. Alex
    Riley, Grace A.
    Fotiadis, Panagiotis
    Schwab, Kristin M.
    Johnson, Keith A.
    Greenberg, Steven M.
    STROKE, 2016, 47
  • [16] Outcome markers for clinical trials in cerebral amyloid angiopathy
    Greenberg, Steven M.
    Salman, Rustam Al-Shahi
    Biessels, Geert Jan
    van Buchem, Mark
    Cordonnier, Charlotte
    Lee, Jin-Moo
    Montaner, Joan
    Schneider, Julie A.
    Smith, Eric E.
    Vernooij, Meike
    Werring, David J.
    LANCET NEUROLOGY, 2014, 13 (04): : 419 - 428
  • [17] Development of a PET radioligand selective for cerebral amyloid angiopathy
    Abrahamson, Eric E.
    Stehouwer, Jeffrey S.
    Vazquez, Alberto L.
    Huang, Guo-Feng
    Mason, N. Scott
    Lopresti, Brian J.
    Klunk, William E.
    Mathis, Chester A.
    Ikonomovic, Milos D.
    NUCLEAR MEDICINE AND BIOLOGY, 2021, 92 : 85 - 96
  • [18] Outcome markers for clinical trials in cerebral amyloid angiopathy
    Greenberg, SM
    Rosand, J
    AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2001, 8 : 56 - 60
  • [19] Regional Associations of Cortical Superficial Siderosis and β-Amyloid-Positron-Emission-Tomography Positivity in Patients With Cerebral Amyloid Angiopathy
    Finze, Anika
    Wahl, Hannes
    Janowitz, Daniel
    Buerger, Katharina
    Linn, Jennifer
    Rominger, Axel
    Stoecklein, Sophia
    Bartenstein, Peter
    Wollenweber, Frank Arne
    Catak, Cihan
    Brendel, Matthias
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 13
  • [20] Prediction of amyloid PET positivity via machine learning algorithms trained with EDTA-based blood amyloid-β oligomerization data
    Young Chul Youn
    Hye Ryoun Kim
    Hae-Won Shin
    Hae-Bong Jeong
    Sang-Won Han
    Jung-Min Pyun
    Nayoung Ryoo
    Young Ho Park
    SangYun Kim
    BMC Medical Informatics and Decision Making, 22