Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers

被引:3
|
作者
Jung, Young Hee [1 ,2 ,3 ]
Lee, Hyejoo [2 ,3 ,4 ]
Kim, Hee Jin [2 ,3 ,4 ]
Na, Duk L. [2 ,3 ,4 ,6 ,7 ]
Han, Hyun Jeong [1 ]
Jang, Hyemin [2 ,3 ,4 ]
Seo, Sang Won [2 ,3 ,4 ,5 ]
机构
[1] Hanyang Univ, Myoungji Hosp, Dept Neurol, Coll Med, Goyang, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurol, 81 Irwon Ro, Seoul 06351, South Korea
[3] Samsung Med Ctr, Neurosci Ctr, Seoul, South Korea
[4] Samsung Med Ctr, Res Inst Future Med, Samsung Alzheimer Res Ctr, 81 Irwon Ro, Seoul 06351, South Korea
[5] Sungkyunkwan Univ, Dept Intelligent Precis Healthcare Convergence, Suwon, South Korea
[6] Sungkyunkwan Univ, Dept Hlth Sci & Technol, SAIHST, Seoul, South Korea
[7] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
SUPERFICIAL SIDEROSIS; ALZHEIMER-DISEASE; MICROBLEEDS;
D O I
10.1038/s41598-020-75664-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amyloid-beta(A beta) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to facilitate prognostic prediction and appropriate treatment decisions. In this study, we applied two interpretable machine learning algorithms, gradient boosting machine (GBM) and random forest (RF), to predict A beta PET positivity in patients with CAA MRI markers. In the GBM algorithm, the number of lobar cerebral microbleeds (CMBs), deep CMBs, lacunes, CMBs in dentate nuclei, and age were ranked as the most influential to predict A beta positivity. In the RF algorithm, the absence of diabetes was additionally chosen. Cut-off values of the above variables predictive of A beta positivity were as follows: (1) the number of lobar CMBs>16.4(GBM)/14.3(RF), (2) no deep CMBs(GBM/RF), (3) the number of lacunes>7.4(GBM/RF), (4) age>74.3(GBM)/64(RF), (5) no CMBs in dentate nucleus(GBM/RF). The classification performances based on the area under the receiver operating characteristic curve were 0.83 in GBM and 0.80 in RF. Our study demonstrates the utility of interpretable machine learning in the clinical setting by quantifying the relative importance and cutoff values of predictive variables for A beta positivity in patients with suspected CAA markers.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Prediction of amyloid PET positivity via machine learning algorithms trained with EDTA-based blood amyloid-β oligomerization data
    Youn, Young Chul
    Kim, Hye Ryoun
    Shin, Hae-Won
    Jeong, Hae-Bong
    Han, Sang-Won
    Pyun, Jung-Min
    Ryoo, Nayoung
    Park, Young Ho
    Kim, SangYun
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [22] Machine Learning for the Prediction of Amyloid Positivity in Amnestic Mild Cognitive Impairment
    Kang, Sung Hoon
    Cheon, Bo Kyoung
    Kim, Ji-Sun
    Jang, Hyemin
    Kim, Hee Jin
    Park, Kyung Won
    Noh, Young
    San Lee, Jin
    Ye, Byoung Seok
    Na, Duk L.
    Lee, Hyejoo
    Seo, Sang Won
    JOURNAL OF ALZHEIMERS DISEASE, 2021, 80 (01) : 143 - 157
  • [23] Infratentorial Cerebral Microbleeds in Patients with Cerebral Amyloid Angiopathy
    Renard, Dimitri
    Tatu, Lavinia
    Thouvenot, Eric
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2018, 27 (09): : 2534 - 2537
  • [24] β-amyloid deposits in veins in patients with cerebral amyloid angiopathy and intracerebral haemorrhage
    Mendel, Tadeusz
    Wierzba-Bobrowicz, Teresa
    Stepien, Tomasz
    Szpak, Grazyna Maria
    FOLIA NEUROPATHOLOGICA, 2013, 51 (02) : 120 - 126
  • [25] Amyloid accumulation in cases of suspected comorbid cerebral amyloid angiopathy and isolated cortical venous thrombosis
    Kobayashi, Yuya
    Hiraoka, Kotaro
    Itabashi, Ryo
    Saito, Takuya
    Kawabata, Yuichi
    Yazawa, Yukako
    Funaki, Yoshihito
    Furumoto, Shozo
    Okamura, Nobuyuki
    Furukawa, Katsutoshi
    Ishiki, Aiko
    Arai, Hiroyuki
    Yanai, Kazuhiko
    Tashiro, Manabu
    Sekijima, Yoshiki
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2024, 457
  • [26] Neocortical Amyloid-β and Tau Pathology in Patients with Cerebral Amyloid Angiopathy
    Huebner, Thomas
    Slavin, Justin
    Mehta, Rupal
    Castellani, Rudy
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2012, 71 (06): : 554 - 554
  • [27] Machine Learning Radiomics for Prediction of Cognitive Deficits by Using Amyloid Pet Images
    Giovacchini, G.
    Giovannini, E.
    Duce, V.
    Pastorino, S.
    Ferrando, O.
    Foppiano, F.
    Passera, C.
    Mannironi, A.
    Tartaglione, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S428 - S428
  • [28] Cerebral Microbleeds, Cerebral Amyloid Angiopathy, and Their Relationships to Quantitative Markers of Neurodegeneration
    Beaman, Charles
    Kozii, Krystyna
    Hilal, Saima
    Liu, Minghua
    Spagnolo-Allende, Anthony J.
    Polanco-Serra, Guillermo
    Chen, Christopher
    Cheng, Ching-Yu
    Zambrano, Daniela
    Arikan, Burak
    Del Brutto, Victor J.
    Wright, Clinton
    Flowers, Xena E.
    Leskinen, Sandra P.
    Rundek, Tatjana
    Mitchell, Amanda
    Vonsattel, Jean Paul
    Cortes, Etty
    Teich, Andrew F.
    Sacco, Ralph L.
    Elkind, Mitchell S., V
    Roh, David
    Gutierrez, Jose
    NEUROLOGY, 2022, 98 (16) : E1605 - E1616
  • [29] Cardiovascular Management in Asymptomatic (Silent) Cerebral Microbleeds and Suspected Cerebral Amyloid Angiopathy
    Charidimou, Andreas
    Smith, Eric E.
    STROKE, 2024, 55 (04) : 1101 - 1112
  • [30] Cerebral Microbleeds, Cerebral Amyloid Angiopathy, And Their Relationships To Quantitative Markers Of Neurodegeneration
    Beaman, Charles
    Kozii, Khrystyna
    Hilal, Saima
    Liu, Minghua
    Spagnolo-Allende, Antonio
    Chen, Christopher
    Cheng, Ching-Yu
    Zambrano, Daniela
    Arikan, Burak
    STROKE, 2022, 53