Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers

被引:3
|
作者
Jung, Young Hee [1 ,2 ,3 ]
Lee, Hyejoo [2 ,3 ,4 ]
Kim, Hee Jin [2 ,3 ,4 ]
Na, Duk L. [2 ,3 ,4 ,6 ,7 ]
Han, Hyun Jeong [1 ]
Jang, Hyemin [2 ,3 ,4 ]
Seo, Sang Won [2 ,3 ,4 ,5 ]
机构
[1] Hanyang Univ, Myoungji Hosp, Dept Neurol, Coll Med, Goyang, South Korea
[2] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurol, 81 Irwon Ro, Seoul 06351, South Korea
[3] Samsung Med Ctr, Neurosci Ctr, Seoul, South Korea
[4] Samsung Med Ctr, Res Inst Future Med, Samsung Alzheimer Res Ctr, 81 Irwon Ro, Seoul 06351, South Korea
[5] Sungkyunkwan Univ, Dept Intelligent Precis Healthcare Convergence, Suwon, South Korea
[6] Sungkyunkwan Univ, Dept Hlth Sci & Technol, SAIHST, Seoul, South Korea
[7] Samsung Med Ctr, Stem Cell & Regenerat Med Inst, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
SUPERFICIAL SIDEROSIS; ALZHEIMER-DISEASE; MICROBLEEDS;
D O I
10.1038/s41598-020-75664-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amyloid-beta(A beta) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to facilitate prognostic prediction and appropriate treatment decisions. In this study, we applied two interpretable machine learning algorithms, gradient boosting machine (GBM) and random forest (RF), to predict A beta PET positivity in patients with CAA MRI markers. In the GBM algorithm, the number of lobar cerebral microbleeds (CMBs), deep CMBs, lacunes, CMBs in dentate nuclei, and age were ranked as the most influential to predict A beta positivity. In the RF algorithm, the absence of diabetes was additionally chosen. Cut-off values of the above variables predictive of A beta positivity were as follows: (1) the number of lobar CMBs>16.4(GBM)/14.3(RF), (2) no deep CMBs(GBM/RF), (3) the number of lacunes>7.4(GBM/RF), (4) age>74.3(GBM)/64(RF), (5) no CMBs in dentate nucleus(GBM/RF). The classification performances based on the area under the receiver operating characteristic curve were 0.83 in GBM and 0.80 in RF. Our study demonstrates the utility of interpretable machine learning in the clinical setting by quantifying the relative importance and cutoff values of predictive variables for A beta positivity in patients with suspected CAA markers.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers
    Young Hee Jung
    Hyejoo Lee
    Hee Jin Kim
    Duk L. Na
    Hyun Jeong Han
    Hyemin Jang
    Sang Won Seo
    Scientific Reports, 10
  • [2] Clinical significance of amyloid β positivity in patients with probable cerebral amyloid angiopathy markers
    Hyemin Jang
    Young Kyoung Jang
    Hee Jin Kim
    David John Werring
    Jin San Lee
    Yeong Sim Choe
    Seongbeom Park
    Juyeon Lee
    Ko Woon Kim
    Yeshin Kim
    Soo Hyun Cho
    Si Eun Kim
    Seung Joo Kim
    Andreas Charidimou
    Duk L. Na
    Sang Won Seo
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 1287 - 1298
  • [3] Clinical significance of amyloid positivity in patients with probable cerebral amyloid angiopathy markers
    Jang, Hyemin
    Jang, Young Kyoung
    Kim, Hee Jin
    Werring, David John
    Lee, Jin San
    Choe, Yeong Sim
    Park, Seongbeom
    Lee, Juyeon
    Kim, Ko Woon
    Kim, Yeshin
    Cho, Soo Hyun
    Kim, Si Eun
    Kim, Seung Joo
    Charidimou, Andreas
    Na, Duk L.
    Seo, Sang Won
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (06) : 1287 - 1298
  • [4] Amyloid Accumulation Evaluated With Pib Pet in Patients With Cerebral Amyloid Angiopathy
    Hasegawa, Itsuki
    Abe, Takato
    Mino, Toshikazu
    Takeuchi, Jun
    Itoh, Yoshiaki
    STROKE, 2019, 50
  • [5] Prediction of Amyloid PET Positivity from FDG PET: a Machine Learning-Based study
    Zhang, Y.
    Shao, H.
    Huang, G.
    Zhang, C.
    Wang, Y.
    Liu, J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S764 - S764
  • [6] Automated Detection of Cerebral Amyloid Angiopathy in Amyloid Beta Stained Slides Using Trained Machine Learning Models
    Minaud, Lise
    Wong, Daniel
    Vinters, Harry
    Perez-RosenDahl, Mari
    Magaki, Shino
    Monuki, Edwin
    Graff, John Paul
    Jin, Lee-Way
    Adams, Hollie
    Das, Sakshi
    Hamsafar, Yamah
    Hu, Zin
    Hu, Yan
    Lou, Jerry
    Martini, Alessandra
    Nguyen, My-Le
    Tarabay, Jana
    Keiser, Michael
    Dugger, Brittany
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2021, 80 (06): : 594 - 594
  • [7] Evaluation of the Diagnostic Utility of Amyloid PET/MRI in Cerebral Amyloid Angiopathy
    Pudis, M.
    Suarez-Pinera, M.
    Rodriguez-Bel, L.
    Garay-Buitron, F.
    Cos-Domingo, M.
    Bondia-Bescos, S.
    Hervas-Sanz, B.
    Diaz-Moreno, J.
    Reynes-Llompart, G.
    Cortes-Romera, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S26 - S26
  • [8] Machine learning prediction of future amyloid beta positivity in amyloid-negative individuals
    Moradi, Elaheh
    Prakash, Mithilesh
    Hall, Anette
    Solomon, Alina
    Strange, Bryan
    Tohka, Jussi
    ALZHEIMERS RESEARCH & THERAPY, 2024, 16 (01)
  • [9] Machine learning prediction of future amyloid beta positivity in amyloid-negative individuals
    Elaheh Moradi
    Mithilesh Prakash
    Anette Hall
    Alina Solomon
    Bryan Strange
    Jussi Tohka
    Alzheimer's Research & Therapy, 16
  • [10] The prevalence of radiological cerebral amyloid angiopathy-related inflammation in patients with cerebral amyloid angiopathy
    Amin, Moein
    Aboseif, Albert
    Southard, Kristopher
    Uchino, Ken
    Kiczek, Matthew
    Hajj-Ali, Rula
    Kharal, G. Abbas
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2023, 32 (12):