The set of k-units modulo n

被引:1
|
作者
Castillo, John H. [1 ]
Caranguay Mainguez, Jhony Fernando [1 ]
机构
[1] Univ Narino, Dept Matemat & Estadist, San Juan De Pasto, Colombia
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2022年 / 15卷 / 03期
关键词
diagonal property; diagonal unit; unit set of a ring; k-unit; Carmichael number; Knodel; number; Carmichael generalized number;
D O I
10.2140/involve.2022.15.367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with identity, U(R) be the group of units of R and k be a positive integer. We say that a is an element of U(R) is ak-unit if alpha(k) = 1. In particular, if the ring R is Z(n) for some positive integer n we say that alpha is a k-unit modulo n. We denote by U-k(n) the set of k-units modulo n. We represent the number of k-units modulo n by du(k)(n) and the ratio of k-units modulo n by rdu(k)(n)= phi(n)/du(k)(n), where phi is the Euler phi function. Recently, S. K. Chebolu proved that the solutions of the equation rdu(2)(n) = 1 are the divisors of 24. Our main result finds all positive integers n such that rdu(k)(n) = 1 for a given k. Then we connect this equation with the Carmichael numbers and two of their generalizations, namely, Knodel numbers and generalized Carmichael numbers.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 50 条