The set of k-units modulo n

被引:1
|
作者
Castillo, John H. [1 ]
Caranguay Mainguez, Jhony Fernando [1 ]
机构
[1] Univ Narino, Dept Matemat & Estadist, San Juan De Pasto, Colombia
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2022年 / 15卷 / 03期
关键词
diagonal property; diagonal unit; unit set of a ring; k-unit; Carmichael number; Knodel; number; Carmichael generalized number;
D O I
10.2140/involve.2022.15.367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with identity, U(R) be the group of units of R and k be a positive integer. We say that a is an element of U(R) is ak-unit if alpha(k) = 1. In particular, if the ring R is Z(n) for some positive integer n we say that alpha is a k-unit modulo n. We denote by U-k(n) the set of k-units modulo n. We represent the number of k-units modulo n by du(k)(n) and the ratio of k-units modulo n by rdu(k)(n)= phi(n)/du(k)(n), where phi is the Euler phi function. Recently, S. K. Chebolu proved that the solutions of the equation rdu(2)(n) = 1 are the divisors of 24. Our main result finds all positive integers n such that rdu(k)(n) = 1 for a given k. Then we connect this equation with the Carmichael numbers and two of their generalizations, namely, Knodel numbers and generalized Carmichael numbers.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 50 条
  • [41] Set (k, n)-exactly covering problem
    Wu Z.
    Gao Y.
    Wu Z.
    High Technology Letters, 2010, 16 (04) : 433 - 436
  • [42] Set (k, n)-Exactly covering problem
    吴振寰
    High Technology Letters, 2010, 16 (04) : 433 - 436
  • [43] FIBONACCI(N) MODULO N SEQUENCE
    Zyuz'kov, Valentin Mikhailovich
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2013, (24): : 15 - 23
  • [44] On the Design of RNS Inter-Modulo Processing Units for the Arithmetic-Friendly Moduli Sets {2n+k, 2n-1, 2n+1-1}
    Hiasat, Ahmad
    Sousa, Leonel
    COMPUTER JOURNAL, 2019, 62 (02): : 292 - 300
  • [45] Distribution of a sparse set of fractions modulo q
    Cobeli, C
    Zaharescu, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 138 - 148
  • [46] On the Set of Images Modulo Viewpoint and Contrast Changes
    Sundaramoorthi, G.
    Petersen, P.
    Varadarajan, V. S.
    Soatto, S.
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 832 - 839
  • [47] EQUALITY OF ORDERS OF A SET OF INTEGERS MODULO A PRIME
    Jarviniemi, Olli
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) : 3651 - 3668
  • [48] On the Multiplicative Order of a(n) Modulo n
    Chappelon, Jonathan
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (02)
  • [49] Answer Set Programming as SAT modulo Acyclicity
    Gebser, Martin
    Janhunen, Tomi
    Rintanen, Jussi
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 351 - 356