On the addition of values of a quadratic polynomial at units modulo n

被引:0
|
作者
R. Xiong
机构
[1] Tongji University,School of Mathematical Sciences
来源
Acta Mathematica Hungarica | 2021年 / 163卷
关键词
residue class; quadratic Gauss sum; Ramanujan sum; 11B13; 11L03; 11L05;
D O I
暂无
中图分类号
学科分类号
摘要
Let Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_{n}$$\end{document} be the ring of residue classes modulo n, Zn∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_{n}^{*}$$\end{document} be its unit group, and let f(z)=az2+bz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=az^{2}+bz$$\end{document} be an integral quadratic polynomial with b≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\neq0$$\end{document} and gcd(a,b)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm gcd}(a,b)=1$$\end{document}. In this paper, for any integer c and positive integer n we give a formula for the number of solutions of the congruence equation f(x)+f(y)≡c(modn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)+f(y)\equiv c({\rm mod}\, n)$$\end{document} with x, y units (modn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\rm mod}\, n)$$\end{document}. This partly solves a problem posed by Yang and Tang in [11].
引用
收藏
页码:62 / 70
页数:8
相关论文
共 50 条
  • [1] ON THE ADDITION OF VALUES OF A QUADRATIC POLYNOMIAL AT UNITS MODULO n
    Xiong, R.
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (01) : 62 - 70
  • [2] On the addition of squares of units modulo n
    Mollahajiaghaei, Mohsen
    JOURNAL OF NUMBER THEORY, 2017, 170 : 35 - 45
  • [3] On the addition of squares of units and nonunits modulo n
    Yang, Quan-Hui
    Tang, Min
    JOURNAL OF NUMBER THEORY, 2015, 155 : 1 - 12
  • [4] SUMS OF POLYNOMIAL TYPE EXCEPTIONAL UNITS MODULO n
    Zhao, Junyong
    Hong, Shaofang
    Zhu, Chaoxi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (02) : 202 - 211
  • [5] ON THE QUADRATIC FORMULA MODULO n
    Wright, Steve
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 7 (01): : 33 - 68
  • [6] On Binary Quadratic Forms Modulo n
    Liu, Yang
    Ouyang, Yi
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2019, 7 (01) : 61 - 67
  • [7] On Binary Quadratic Forms Modulo n
    Yang Liu
    Yi Ouyang
    Communications in Mathematics and Statistics, 2019, 7 : 61 - 67
  • [8] Sums and differences of values of a quadratic polynomial
    Beardon, AF
    FIBONACCI QUARTERLY, 2003, 41 (04): : 372 - 373
  • [9] On polynomial values of anisotropic quadratic forms
    Sivatski, A. S.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (06)
  • [10] Arithmetic Progressions in the Values of a Quadratic Polynomial
    Pongsriiam, Prapanpong
    Subwattanachai, Kittipong
    AMERICAN MATHEMATICAL MONTHLY, 2021,