Large time behavior;
Singular diffusion;
Gradient absorption;
Very singular solutions;
p-Laplacian;
Bounded measures;
DEGENERATE PARABOLIC EQUATION;
HAMILTON-JACOBI EQUATIONS;
CAUCHY-PROBLEM;
P-LAPLACIAN;
EXTINCTION;
UNIQUENESS;
D O I:
10.1016/j.jde.2014.01.016
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the large time behavior of non-negative solutions to the singular diffusion equation with gradient absorption partial derivative(t)u - Delta(p)u + vertical bar del u vertical bar(q) = 0 in (0,infinity) x R-N, for p(c) := 2N/(N + 1) < p < 2 and p/2 < q < q(*) := p-N/(N + 1). We prove that there exists a unique very singular solution of the equation, which has self-similar form and we show the convergence of general solutions with suitable initial data towards this unique very singular solution. (C) 2014 Elsevier Inc. All rights reserved.
机构:
Univ Bucharest, Fac Math & Comp Sci, 14 Acad St, Bucharest 010014, Romania
Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei St, Bucharest 010702, RomaniaUniv Bucharest, Fac Math & Comp Sci, 14 Acad St, Bucharest 010014, Romania
Cazacu, Cristian M.
Ignat, Liviu I.
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei St, Bucharest 010702, RomaniaUniv Bucharest, Fac Math & Comp Sci, 14 Acad St, Bucharest 010014, Romania
Ignat, Liviu I.
Pazoto, Ademir F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, POB 68530, BR-21941909 Rio De Janeiro, RJ, BrazilUniv Bucharest, Fac Math & Comp Sci, 14 Acad St, Bucharest 010014, Romania