Asymptotic behavior for a singular diffusion equation with gradient absorption

被引:4
|
作者
Iagar, Razvan Gabriel [1 ,2 ]
Laurencot, Philippe [3 ]
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Burjassot, Valencia, Spain
[2] Romanian Acad, Inst Math, RO-014700 Bucharest, Romania
[3] Univ Toulouse, CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
关键词
Large time behavior; Singular diffusion; Gradient absorption; Very singular solutions; p-Laplacian; Bounded measures; DEGENERATE PARABOLIC EQUATION; HAMILTON-JACOBI EQUATIONS; CAUCHY-PROBLEM; P-LAPLACIAN; EXTINCTION; UNIQUENESS;
D O I
10.1016/j.jde.2014.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the large time behavior of non-negative solutions to the singular diffusion equation with gradient absorption partial derivative(t)u - Delta(p)u + vertical bar del u vertical bar(q) = 0 in (0,infinity) x R-N, for p(c) := 2N/(N + 1) < p < 2 and p/2 < q < q(*) := p-N/(N + 1). We prove that there exists a unique very singular solution of the equation, which has self-similar form and we show the convergence of general solutions with suitable initial data towards this unique very singular solution. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:2739 / 2777
页数:39
相关论文
共 50 条
  • [41] Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 673 - 697
  • [42] Asymptotic behavior of solutions to the multidimensional semidiscrete diffusion equation
    Slavik, Antonin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (09) : 1 - 9
  • [43] ASYMPTOTIC BEHAVIOR FOR A NONLOCAL DIFFUSION EQUATION ON THE HALF LINE
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (04) : 1391 - 1407
  • [44] Asymptotic behavior for a class of the renewal nonlinear equation with diffusion
    Michel, Philippe
    Touaoula, Tarik Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (03) : 323 - 335
  • [45] ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF A NONLINEAR DIFFUSION EQUATION
    VANDUYN, CJ
    PELETIER, LA
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 65 (04) : 363 - 377
  • [46] Asymptotic numerical analysis of the diffusion-discrete absorption equation
    Kurbatova, P.
    Panasenko, G.
    Volpert, V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (04) : 438 - 444
  • [47] On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion
    Cazacu, Cristian M.
    Ignat, Liviu I.
    Pazoto, Ademir F.
    NONLINEARITY, 2017, 30 (08) : 3126 - 3150
  • [48] Asymptotic behaviour of a nonlinear parabolic equation with gradient absorption and critical exponent
    Gabriel Iagar, Razvan
    Laurencot, Philippe
    Luis Vazquez, Juan
    INTERFACES AND FREE BOUNDARIES, 2011, 13 (02) : 271 - 295
  • [49] Self-similar singular solution of doubly singular parabolic equation with gradient absorption term
    Shi, Peihu
    Wang, Mingxin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1) : 1 - 21
  • [50] Self-similar singular solution of doubly singular parabolic equation with gradient absorption term
    Peihu Shi
    Mingxin Wang
    Journal of Inequalities and Applications, 2006