A polynomial time algorithm for obtaining a minimum vertex ranking spanning tree in outerplanar graphs

被引:2
|
作者
Nakayama, Shin-ichi [1 ]
Masuyama, Shigeru
机构
[1] Univ Tokushima, Fac Integrated Arts & Sci, Dept Math Sci, Tokushima 7708502, Japan
[2] Toyohashi Univ Technol, Dept Knowledge Based Informat Engn, Toyohashi, Aichi 4418580, Japan
关键词
algorithm; vertex ranking; spanning tree; outerplanar graph;
D O I
10.1093/ietisy/e89-d.8.2357
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The minimum vertex ranking spanning tree problem is to find a spanning tree of G whose vertex ranking is minimum. This problem is NP-hard and no polynomial time algorithm for solving it is known for non-trivial classes of graphs other than the class of interval graphs. This paper proposes a polynomial time algorithm for solving the minimum vertex ranking spanning tree problem on outerplanar graphs.
引用
收藏
页码:2357 / 2363
页数:7
相关论文
共 50 条
  • [21] Associative parallel algorithm for dynamic reconstruction of a minimum spanning tree after deletion of a vertex
    Nepomniaschaya, A
    PARALLEL COMPUTING TECHNOLOGIES, 2005, 3606 : 159 - 173
  • [22] Minimum Spanning Tree Method for Sparse Graphs
    Wang, Xianchao
    Li, Shaoyi
    Hou, Changhui
    Zhang, Guoming
    Mathematical Problems in Engineering, 2023, 2023
  • [23] An optimal minimum spanning tree algorithm
    Pettie, S
    Ramachandran, V
    JOURNAL OF THE ACM, 2002, 49 (01) : 16 - 34
  • [24] An optimal minimum spanning tree algorithm
    Pettie, S
    Ramachandran, V
    AUTOMATA LANGUAGES AND PROGRAMMING, 2000, 1853 : 49 - 60
  • [25] PROBABILISTIC MINIMUM SPANNING TREE ALGORITHM
    ROHLF, FJ
    INFORMATION PROCESSING LETTERS, 1978, 7 (01) : 44 - 48
  • [26] Solving the maximum internal spanning tree problem on interval graphs in polynomial time
    Li, Xingfu
    Feng, Haodi
    Jiang, Haotao
    Zhu, Binhai
    THEORETICAL COMPUTER SCIENCE, 2018, 734 : 32 - 37
  • [27] A FAST ALGORITHM FOR THE MINIMUM SPANNING TREE
    SURAWEERA, F
    COMPUTERS IN INDUSTRY, 1989, 13 (02) : 181 - 185
  • [28] An Efficient Minimum Spanning Tree Algorithm
    Abdullah-Al Mamun
    Rajasekaran, Sanguthevar
    2016 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATION (ISCC), 2016, : 1047 - 1052
  • [29] A polynomial time algorithm for minimum cycle basis in directed graphs
    Kavitha, T
    Mehlhorn, K
    STACS 2005, PROCEEDINGS, 2005, 3404 : 654 - 665
  • [30] An Efficient Greedy Minimum Spanning Tree Algorithm Based on Vertex Associative Cycle Detection Method
    Biswas, Prantik
    Goel, Mansi
    Negi, Harshita
    Datta, Megha
    2ND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, COMMUNICATION & CONVERGENCE, ICCC 2016, 2016, 92 : 513 - 519