A polynomial time algorithm for obtaining a minimum vertex ranking spanning tree in outerplanar graphs

被引:2
|
作者
Nakayama, Shin-ichi [1 ]
Masuyama, Shigeru
机构
[1] Univ Tokushima, Fac Integrated Arts & Sci, Dept Math Sci, Tokushima 7708502, Japan
[2] Toyohashi Univ Technol, Dept Knowledge Based Informat Engn, Toyohashi, Aichi 4418580, Japan
关键词
algorithm; vertex ranking; spanning tree; outerplanar graph;
D O I
10.1093/ietisy/e89-d.8.2357
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The minimum vertex ranking spanning tree problem is to find a spanning tree of G whose vertex ranking is minimum. This problem is NP-hard and no polynomial time algorithm for solving it is known for non-trivial classes of graphs other than the class of interval graphs. This paper proposes a polynomial time algorithm for solving the minimum vertex ranking spanning tree problem on outerplanar graphs.
引用
收藏
页码:2357 / 2363
页数:7
相关论文
共 50 条
  • [41] The Minimum Stretch Spanning Tree Problem for Typical Graphs
    Lin, Lan
    Lin, Yi-xun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (03): : 510 - 522
  • [42] Critical Random Graphs and the Structure of a Minimum Spanning Tree
    Addario-Berry, L.
    Broutin, N.
    Reed, B.
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (03) : 323 - 347
  • [43] The Minimum Stretch Spanning Tree Problem for Typical Graphs
    Lan Lin
    Yi-xun Lin
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 510 - 522
  • [44] A minimum spanning tree equipartition algorithm for microaggregation
    Panagiotakis, Costas
    Tziritas, Georgios
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 846 - 865
  • [45] An algorithm for inverse minimum spanning tree problem
    Zhang, JH
    Xu, SJ
    Ma, ZF
    OPTIMIZATION METHODS & SOFTWARE, 1997, 8 (01): : 69 - 84
  • [46] A polynomial-time algorithm for Outerplanar Diameter Improvement
    Cohen, Nathann
    Goncalves, Daniel
    Kim, Eun Jung
    Paul, Christophe
    Sau, Ignasi
    Thilikos, Dimitrios M.
    Weller, Mathias
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 89 : 315 - 327
  • [47] Clustering Based Minimum Spanning Tree Algorithm
    Saxena, Sakshi
    Verma, Priyanka
    Rajpoot, Dharmveer Singh
    2017 TENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2017, : 360 - 362
  • [48] A parallel algorithm for minimum spanning tree on GPU
    de Alencar Vasconcellos, Jucele Franca
    Caceres, Edson Norberto
    Mongelli, Henrique
    Song, Siang Wun
    2017 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS (SBAC-PADW), 2017, : 67 - 72
  • [49] Polynomial Time Algorithm for Constructing Vertex-Disjoint Paths in Transposition Graphs
    Fujita, Satoshi
    NETWORKS, 2010, 56 (02) : 149 - 157
  • [50] Minimum spanning tree partitioning algorithm for microaggregation
    Laszlo, M
    Mukherjee, S
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (07) : 902 - 911