An Efficient Minimum Spanning Tree Algorithm

被引:0
|
作者
Abdullah-Al Mamun [1 ]
Rajasekaran, Sanguthevar [1 ]
机构
[1] Univ Connecticut, Comp Sci & Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
CARCINOMA; NETWORKS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finding minimum spanning trees (MST) in various types of networks is a well-studied problem in theory and practical applications. A number of efficient algorithms have been already developed for this problem. In this paper we present an efficient algorithm, namely Edge Pruned Minimum Spanning Tree (EPMST) algorithm, which combines ideas from randomized selection, Kruskal's algorithm and Prim's algorithm. The algorithm has a superior performance relative to the best-known algorithms especially when the graph is not very sparse. Specifically, EPMST outperforms a recently devised efficient algorithm on a wide range of input graphs.
引用
收藏
页码:1047 / 1052
页数:6
相关论文
共 50 条
  • [1] A new efficient parallel algorithm for minimum spanning tree
    de Alencar Vasconcellos, Jucele Franca
    Caceres, Edson Norberto
    Mongelli, Henrique
    Song, Siang Wun
    [J]. 2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018), 2018, : 107 - 114
  • [2] An optimal minimum spanning tree algorithm
    Pettie, S
    Ramachandran, V
    [J]. JOURNAL OF THE ACM, 2002, 49 (01) : 16 - 34
  • [3] An optimal minimum spanning tree algorithm
    Pettie, S
    Ramachandran, V
    [J]. AUTOMATA LANGUAGES AND PROGRAMMING, 2000, 1853 : 49 - 60
  • [4] An efficient node partitioning algorithm for the capacitated minimum spanning tree problem
    Han, Jun
    Sun, Zhaohao
    Huai, Jinpeng
    Li, Xian
    [J]. 6TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, PROCEEDINGS, 2007, : 575 - +
  • [5] PROBABILISTIC MINIMUM SPANNING TREE ALGORITHM
    ROHLF, FJ
    [J]. INFORMATION PROCESSING LETTERS, 1978, 7 (01) : 44 - 48
  • [6] A FAST ALGORITHM FOR THE MINIMUM SPANNING TREE
    SURAWEERA, F
    [J]. COMPUTERS IN INDUSTRY, 1989, 13 (02) : 181 - 185
  • [7] A Simple and Efficient Algorithm for Finding Minimum Spanning Tree Replacement Edges
    Bader, David A.
    Burkhardt, Paul
    [J]. Journal of Graph Algorithms and Applications, 2022, 26 (04) : 577 - 588
  • [8] An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem
    Raidl, GR
    [J]. PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 104 - 111
  • [9] An Efficient Multi-objective Evolutionary Algorithm Based on Minimum Spanning Tree
    Li, Miqing
    Zheng, Jinhua
    Xiao, Guixia
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 617 - 624
  • [10] A minimum spanning tree equipartition algorithm for microaggregation
    Panagiotakis, Costas
    Tziritas, Georgios
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 846 - 865