SpOT: Spatiotemporal Modeling for 3D Object Tracking

被引:5
|
作者
Stearns, Colton [1 ]
Rempe, Davis [1 ]
Li, Jie [2 ]
Ambrus, Rare [2 ]
Zakharov, Sergey [2 ]
Guizilini, Vitor [2 ]
Yang, Yanchao [1 ]
Guibas, Leonidas J. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Toyota Res Inst, Los Altos, CA USA
来源
关键词
3D object detection; 3D object tracking; point clouds; LiDAR; Autonomous driving; NuScenes Dataset;
D O I
10.1007/978-3-031-19839-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D multi-object tracking aims to uniquely and consistently identify all mobile entities through time. Despite the rich spatiotemporal information available in this setting, current 3D tracking methods primarily rely on abstracted information and limited history, e.g. single-frame object bounding boxes. In this work, we develop a holistic representation of traffic scenes that leverages both spatial and temporal information of the actors in the scene. Specifically, we reformulate tracking as a spatiotemporal problem by representing tracked objects as sequences of time-stamped points and bounding boxes over a long temporal history. At each time-stamp, we improve the location and motion estimates of our tracked objects through learned refinement over the full sequence of object history. By considering time and space jointly, our representation naturally encodes fundamental physical priors such as object permanence and consistency across time. Our spatiotemporal tracking framework achieves state-of-the-art performance on the Waymo and nuScenes benchmarks.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [41] Bioinspired point cloud representation: 3D object tracking
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    Cazorla, Miguel
    Morell, Vicente
    Azorin, Jorge
    Saval, Marcelo
    Garcia-Garcia, Alberto
    Villena, Victor
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (09): : 663 - 672
  • [42] Integrated Object Segmentation and Tracking for 3D LIDAR Data
    Tuncer, Mehmet Ali Cagri
    Schulz, Dirk
    ICINCO: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2, 2016, : 344 - 351
  • [43] Center-based 3D Object Detection and Tracking
    Yin, Tianwei
    Zhou, Xingyi
    Krahenbuhl, Philipp
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 11779 - 11788
  • [44] Monocular Multiview Object Tracking with 3D Aspect Parts
    Xiang, Yu
    Song, Changkyu
    Mottaghi, Roozbeh
    Savarese, Silvio
    COMPUTER VISION - ECCV 2014, PT VI, 2014, 8694 : 220 - 235
  • [45] Mutual Information-Based 3D Object Tracking
    Giorgio Panin
    Alois Knoll
    International Journal of Computer Vision, 2008, 78 : 107 - 118
  • [46] 3D object tracking by using virtual viewpoint images
    Seimitsu Kogaku Kaishi, 12 (1194-1199):
  • [47] An hardware architecture for 3D object tracking and motion estimation
    Lanvin, P
    Noyer, JC
    Benjelloun, M
    2005 IEEE International Conference on Multimedia and Expo (ICME), Vols 1 and 2, 2005, : 330 - 333
  • [48] 3D Object Tracking Using Directional Procrustes Snake
    Kamandar, Mehdi
    Seyedin, Seyed Alireza
    Khoshbin, Hossein
    2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 918 - 923
  • [49] 3D Object Tracking using RGB and LIDAR Data
    Asvadi, Alireza
    Girao, Pedro
    Peixoto, Paulo
    Nunes, Urbano
    2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2016, : 1255 - 1260
  • [50] LiDAR-based 3D Video Object Detection with Foreground Context Modeling and Spatiotemporal Graph Reasoning
    Xiong, Ziyu
    Ma, Huimin
    Wang, Yilin
    Hu, Tianyu
    Liao, Qingmin
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2994 - 3001